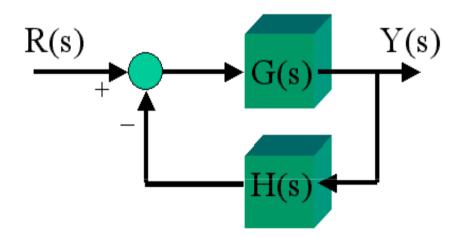
Universidad Nacional de Tucumán

Fundada el 25 de mayo de 1914


SISTEMAS DE CONTROL AVANZADOS NORMAS DE REPRESENTACIÓN

- **CÁTEDRA:** "SISTEMAS DE CONTROL"
 - **DOCENTE:** Prof. Ing. Marcos A. Golato

Introducción

Los sistemas convencionales (lazos simples de control), no son suficientes algunas veces para la ejecución correcta de un control.

- Este sistema resuelve el problema mediante un procedimiento de prueba y error.
- Este sistema genera la señal de control en base a la diferencia entre los valores de medición y de referencia.

Cátedra: "Sistemas de Control" - TEO -09/19

_

Sistemas de control avanzados

Son técnicas más efectivas que se aplican al lazo simple de control con realimentación, ya que muchas veces las perturbaciones provocan desvíos grandes con respecto al "set point" con demasiada duración.

Las técnicas empleadas son:

- Control en cascada.
- Control en adelanto (Feed Forward).
- Control de relación.
- Control de restricción o selectivo.

Normas de representación de los sistemas de control

Diagramas P&ID:

Se denomina diagrama "P&ID" (Piping and Intrumentation Diagram), a los esquemas donde se registran toda la instrumentación sobre un diagrama de flujo de proceso. Estos permiten asociar a cada elemento de medición y/o control un código, denominado "TAG" del instrumento.

Simbología:

Los símbolos y nomenclaturas que se utilizan en los diagramas P&ID, se encuentran normalizados en diversos estándares. Las representaciones se realizan según:

- En Argentina: Norma IRAM-IAP 550, año 1972 y 1973 (IRAM 505).
- En el mundo:

Norma ISA (Instrument Society of America), S5.1 (1986), S5.2 (1981), S5.3 (1983), S5.4 (1986) y S5.5 (1989).

Norma SAMA (Scientific Apparatus Makers Association), esta organización se encarga de reunir y estandarizar los aparatos que se construyen para mediciones de variables físicas.

Identificación de los instrumentos

Consiste en un arreglo de letras y números, y es de primordial importancia para la interpretación de los diagramas P&ID.

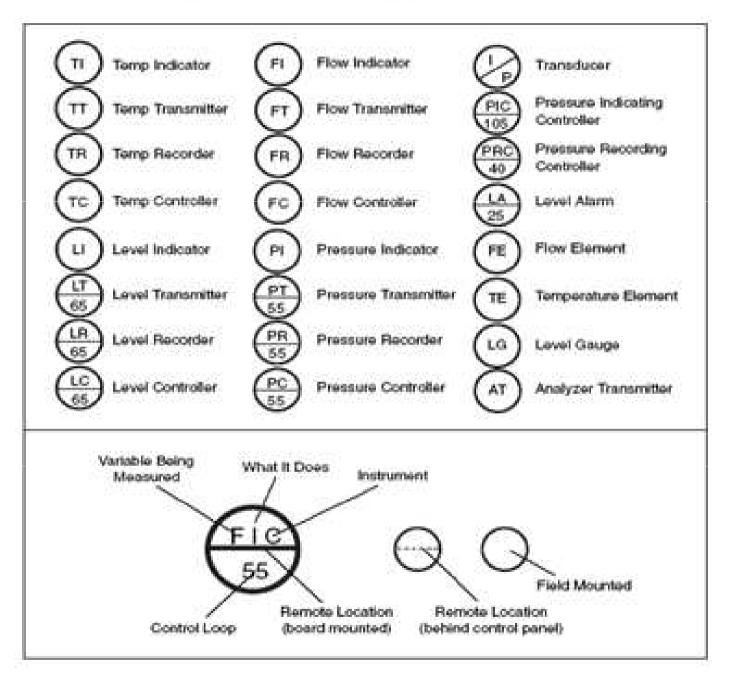
Por ejemplo: para un controlador de nivel con indicación local, tendría la forma "LIC-101A", con el siguiente significado:

L	I	С	101	A
PRIMERA LETRA	MODIFICADOR DE LA SEGUNDA LETRA	SEGUNDA LETRA	NÚMERO DE IDENTIFICACIÓN DEL LAZO	SUFIJO ADICIONAL

Significado de las letras

	PRIMERA LETRA	LETRAS SUCESIVAS
A	ANÁLISIS	ALARMA
C	ELEGIBLE POR EL USUARIO	CONTROL
D	ELEGIBLE POR EL USUARIO	DIFERENCIAL
E	TENSIÓN	ELEMENTO PRIMARIO DE MEDICIÓN (SENSOR)
F	CAUDAL	RELACIÓN
L	NIVEL	ВАЈО
I	CORRIENTE	INDICACIÓN
P	PRESIÓN	-
Q	TOTALIZACIÓN / EVENTO	-
R	RADIACIÓN	REGISTRO
S	VELOCIDAD/FRECUENCIA	INTERRUPTOR
T	TEMPERATURA	TRANSMISOR
U	MULTIVARIABLE	MULTIFUNCIÓN
V	VIBRACIÓN	VÁLVULA
Y	INDEFINIDA	RELÉ DE CÓMPUTO O LÓGICO
Z	POSICIÓN	MOTOR / ELEMENTO FINAL DE CONTROL

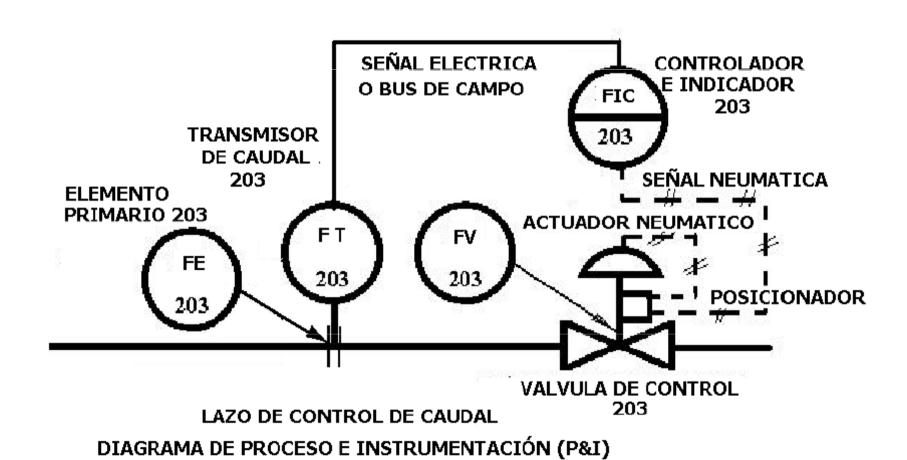
- **PRIMERA LETRA:** indica siempre la variable que se controla.
- MODIFICADOR DE LA PRIMERA LETRA: indica diferencia, relación, etc, de la variable medida.
- **SEGUNDA LETRA**: describe la función cumplida por el elemento.

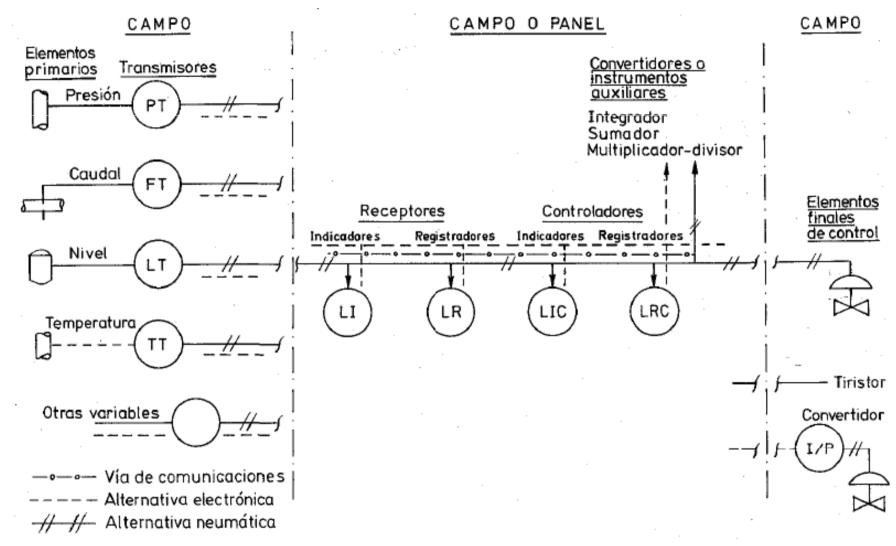

Ejemplos:

PT= Transmisor de presión (primera y segunda letra).

PDT= Transmisor diferencia de presión (primera letra con su modificadora y segunda letra).

PIT= Transmisor de presión con indicación local (primera y segunda letra con modificadora para la función pasiva de indicación).


INDICADORES E INSTRUMENTOS DE CONTROL


Ejemplo: Lazo de control de caudal

8

Ejemplos de identificación de instrumentos y su ubicación

Ejemplo: Sistema de control de una planta de calentamiento de un producto.

Leyenda:

FT: Transmisor de Flujo

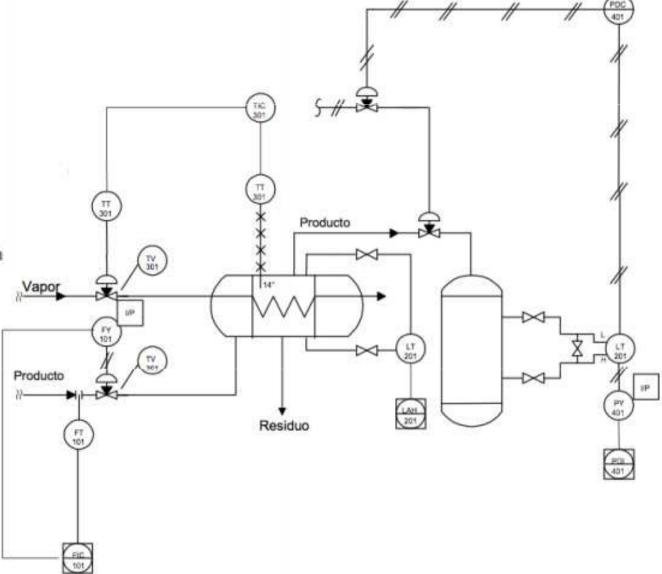
FIC : Controlador Indicador de flujo

FY : Relé de Flujo

LAH: Nivel con Alarma de Alta

LT : Transmisor de Nivel I/P : Corriente/Neumático

PY : Relé de presión


PDI: Indicador Presión Diferencial

PDC: Controlador Presión Diferencial

TT: Transmisor de Temperatura

TV : Válvula de Temperatura

TIC: Controlador Indicador de Temperatura

Símbolos SAMA p/ sistemas de control de combustión

Introducción

La complejidad de las estrategias usadas para el control de la combustión requiere una notación que exceda los Diagramas de Proceso e Instrumentación (P&IDs) estándar de la ISA (Sociedad de Instrumentación, Sistemas y Automatización). La Asociación Científica de Fabricantes de Aparatos (SAMA) ha desarrollado tal notación y esto se utiliza comúnmente para definir estrategias de control de combustión.

Fundamentos

La notación SAMA consiste en cuatro formas, una serie de letras para la información de la etiqueta y varios algoritmos matemáticos de control. Estos componentes, demostrados en las tablas abajo, se combinan para describir completamente la lógica de control compleja.

Tipo de Dispositivo						
0	Medición o Indicación					
\Diamond	Procesamiento Manual					
	Procesamiento Automático					
	Control Final					

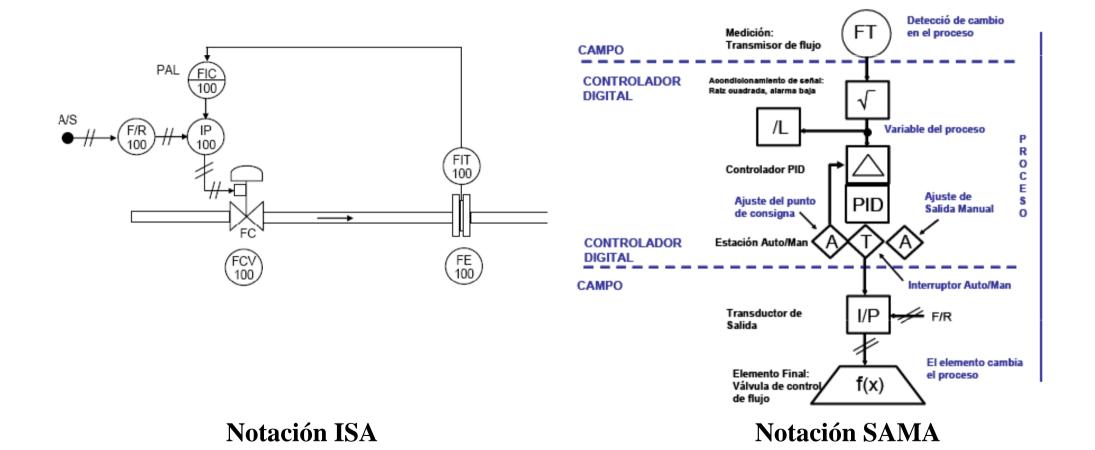
	Letras de Medición/Indicación								
Α	Análisis	R	Registro						
С	Conductividad	I	Indicación						
D	Densidad	Q	Integración						
F	Flujo	U	Adquisición Digital						
L	Nivel	Т	Transmisor						
M	Humedad	RT	Transmisor Registrador						
P	Presión	IT	Transmisor Indicador						
S	Velocidad								
Т	Temperatura								
V	Viscosidad								
Z	Posición								

	Procesamiento de la Señal									
Adición	Σ	Selector Alto	>							
Promedio	Σ /n	Selector Bajo	<							
Diferencia	Δ ó -	Limitador Alto	>							
Proporcional	ΚóΡ	Limitador Bajo	*							
Integral	∫ól	Proporción Inversa	-K ó -P							
Derivativa	d/dt ó D	Limite de Velocidad	∨ ≰							
Multiplicación	X	Bias	土							
División	÷	Función de tiempo	f(t)							
Raíz Cuadrada	n√x	Transferencia de señal	Т							
No-lineal	f ₁ (x)	Generador de señal	Α							
Tres estados	‡	Comparador de señal	H/, /L							

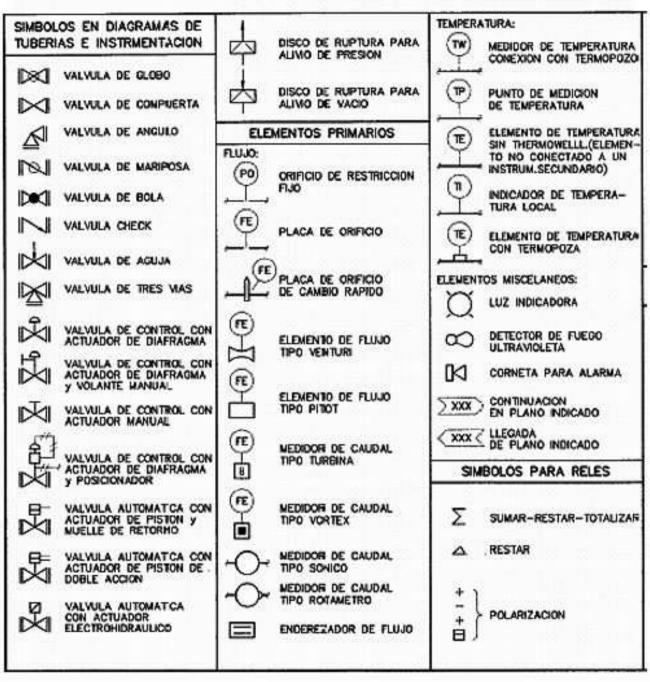
FUNCION BLOCK - FUNCION DESIGNACION

La función designación esta asociada con controladores dispositivos computacionales convertidores y reles se usa individualmente o en combinaciones(ver tabla 1 nota 14) Las "cajas" ayudan en la ubicación de símbolos u otras marcas en diagramas y permite que la función se use solo en block de diseño conceptual

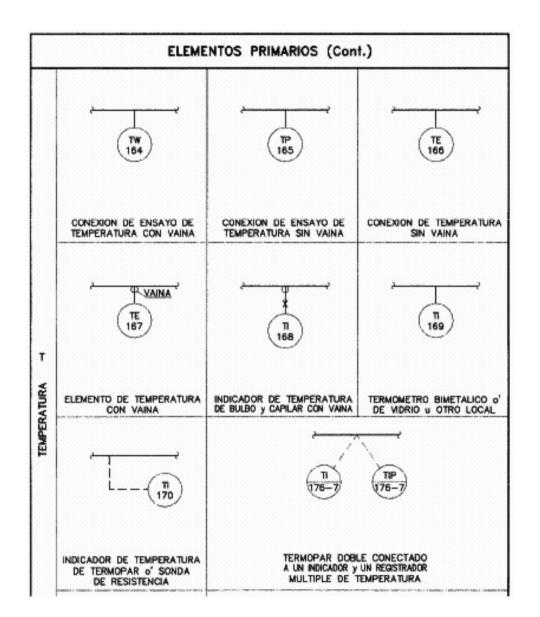
N°	FUNCION	SIMBOLO	ECUACION	REPRESENTACION GRAFICA	DEFINICION
1	SUMA	Σ	M =X ₁ +X ₂ ++X _n	x ₁ x ₂ M t	La salida es la suma algebraica de las entradas. Las entradas pueden ser positivas o negativas
2	PROMEDIO	$\frac{\sum_{n}}{n}$	$M = \frac{X1 + X2 + + Xn}{n}$	x/1 x2 x3 t	La salida es la suma algebraica de las entradas dividida por el numero de entradas
3	DIFERENCIA	Δ	M = X ₁ -X ₂	x ₁ x ₂ M t	La salida es la diferencia algebraica de dos entradas
4	PROPORCIONALIDAD	K 1:1 2:1	M = KX	x M / t1 t	La salida es directamente proporcional a la entrada. En un bloque K puede ser 1:1, 2:1 etc que reemplazan a K
5	INTEGRACION	ſ	$M = \frac{1}{Ti} \int x dt$	x M t1 t2 t	La salida varia con ambas magnitudes y su duración. La salida es proporcional al tiempo de integración de la entrada
6	DERIVADA	d/dt	$M = T_D \frac{dx}{dt}$	x M to	La salida es proporcional a la razón de cambio de la entrada

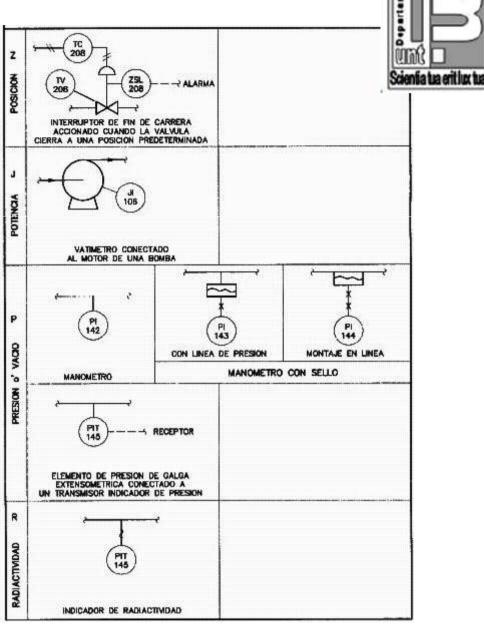

Ν°	FUNCION	SIMBOLO	ECUACION	REPRESENTACION GRAFICA	DEFINICION
7	MULTIPLICACIO	X	M =X ₁ X ₂	x ₁	La salida es el producto de las dos entradas
8	DIVISION	÷	$M = \frac{X1}{X2}$	x M x1 x2 t1 t	
9	EXTRAER RAIZ	n/	$M = \sqrt[n]{X}$	x M t	La salida es la raíz n de las entradas si n es omitida se asume raiz cuadrada
10	EXPONENCIAL	X ⁿ	M = X ⁿ	x M t1 t1 t	La salida es igual a la entrada elevada a exponente n
11	NO LIENAL O FUNCION NO ESPECIFICAD	M = f(x)	M = f(x)	x	La salida es no lineal o función no especificada de la entrada
12	FUNCION TIEMPO	f(t)	M = Xf(t) M = f(t)	X M t1 t	La salida es igual a la entrada en función tiempo o al tiempo solamente

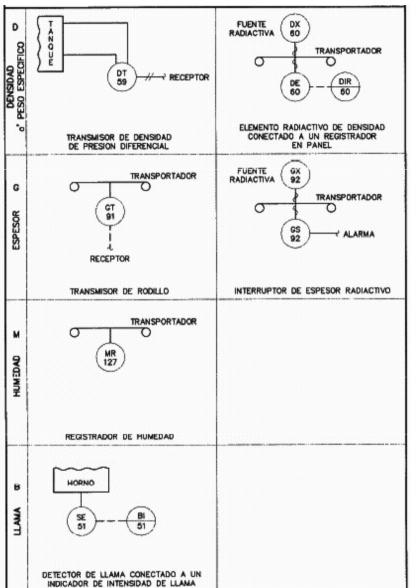
N°	FUNCION	SIMBOLO	ECUACION	REPRESENTACION GRAFICA	DEFINICION
13	SELECCIÓN MAYOR	>	$M = \begin{cases} X.para.X1 \ge X2 \\ X2.para.X1 \le X2 \end{cases}$	x	La salida es mayor que las entradas
14	SELECCIONA MENOR	<	$M = \begin{cases} X.para.X1 \le X2 \\ X2.para.X1 \ge X2 \end{cases}$	x_1 x_2 x_1 x_1 x_1 x_1 x_2 x_1 x_2 x_1 x_1 x_2 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_2 x_1 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_2 x_1 x_2 x_2 x_2 x_1 x_2 x_2 x_2 x_1 x_2 x_1 x_2 x_2 x_1 x_2 x_1 x_2 x_1 x_2 x_2 x_1 x_2 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_2 x_1 x_2 x_1 x_1 x_1 x_2 x_1 x_2 x_1 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_2 x_1 x_1 x_1 x_2 x_1 x_1 x_2 x_1	La salida es menor que las entradas
15	LIMITACION MAYOR	>	$M = \begin{cases} X.para.X \le H \\ H.para.X \ge H \end{cases}$	X H t	La salida es igual a la entrada o al limite mayor, mientras el valor sea menor
16	LIMITACION MENOR	<	$M = \begin{cases} X.para.X \ge L \\ L.para.X \le L \end{cases}$	X L M t1 t	La salida es igual a la entrada o al limite menor mientras el valor sea mayor
17	PROPORCIONAL INVERSA	-K	M = -KX	x t M	La salida es inversamente proporcional a la entrada la entrada

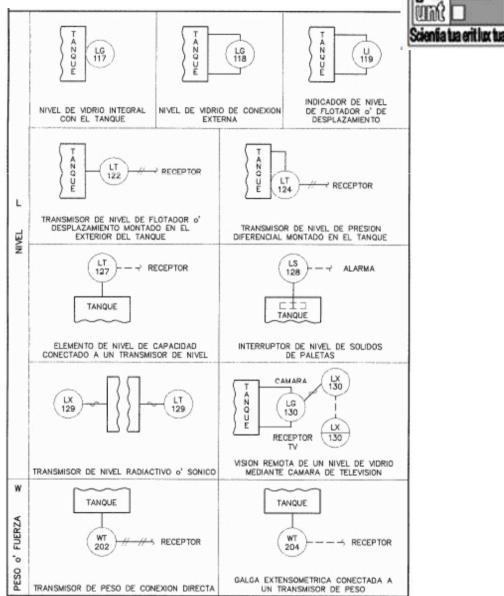

5.4	TABLA 3 CON	TINUACION			
N°	FUNCION	SIMBOLO	ECUACION	REPRESENTACION GRAFICA	DEFINICION
18	LIMITACION DE VELOCIDAD	7	$\frac{dM}{dt} = \frac{dx}{dt} \left\{ \frac{dx}{\frac{dt}{M-x}} \le H.AND \right.$ $\frac{dM}{dt} = H \left\{ \frac{dx}{\frac{dt}{M-x}} \ge H.OR \right.$	x M dx/dt>H dx/dt=H	La salida es igual a la entrada, mientras la relación de cambio de la entrada no exceda un valor limite. La salida cambiara con la relación establecida de limite hasta que la salida sea igual a la entrada
19	BIAS	+ - ±	M = X ± b	X M	La salida es igual a la entrada más o menos un valor arbitrario (Bias)
20	CONVERTIDOR	*/*	Salida = f (entrada)	NADA	La forma de la señal de salida es diferente que las señal de entrada. * E tensión H hidráulico I corriente Q electromagnético P Neumático A análogo B binario R resistencia eléctrica D digital

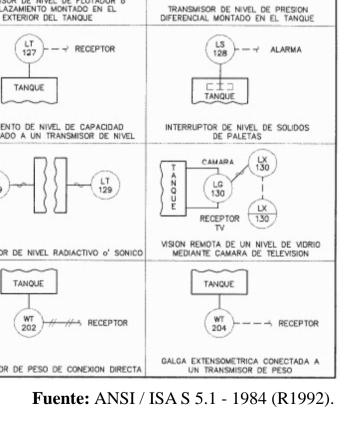
Comparación de los métodos de notación ISA y SAMA para un lazo típico de control de caudal

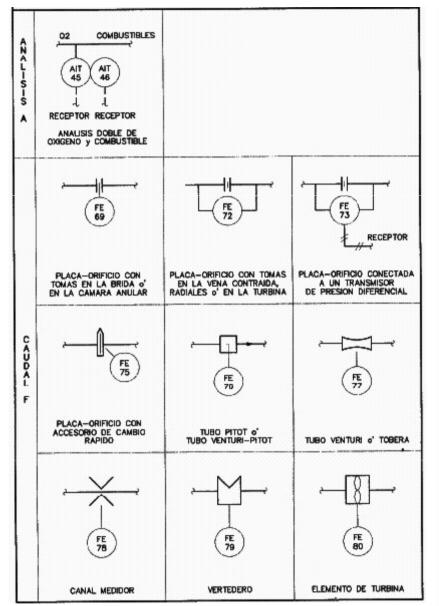

SIMBOLOGIA DE INSTRUMENTACION - NORMA ISA

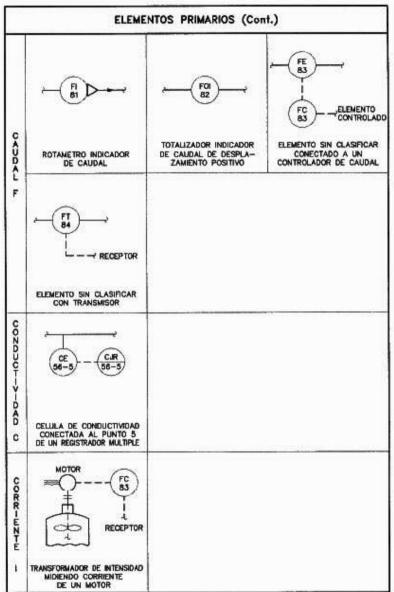


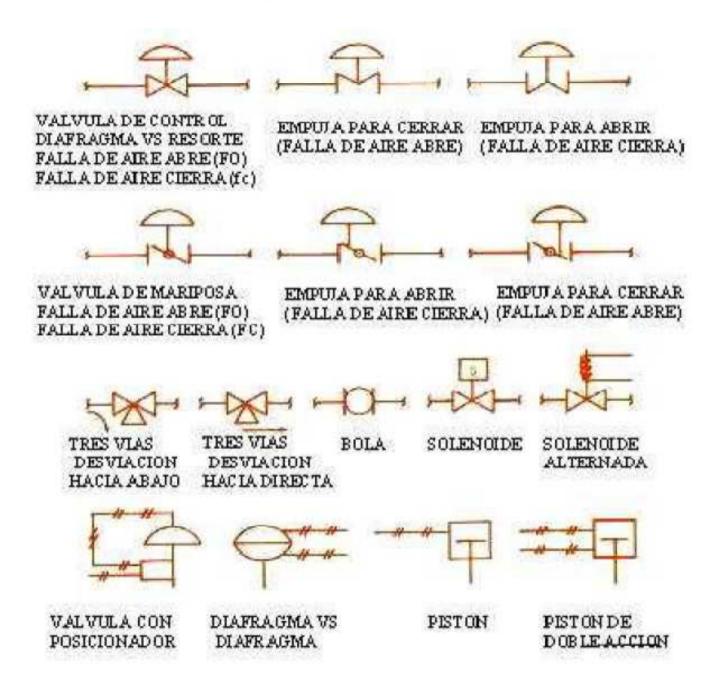


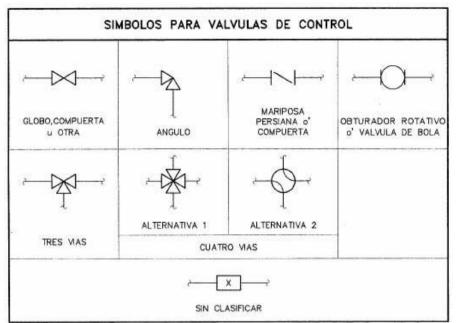



FUNCIO	N	REGISTRADOR	INDICADOR	CONTROLADOR	REGISTRADOR/ CONTROL	INDICADOR/ CONTROLADOR	보다	ALARMA	RELE	TRANSMISOR	ELEMENTO PRIMARIO	VALVULA						
VARIABLE	/	(R)	(1)	(C)	(RC)	(IC)	(Q)	(A)	(Y)	(T)	(E)	(v)	(CV)	(SV)	(C)	(S)		i
ANALISIS	A	AR	Al	AC	ARC	AIC	AQ	AA	AY	AT	AE	A٧				AS	1	1
LLAMA	В	2	ВІ	BC		BIC	100	BA	BY	BT	BE				BG	BS		1
CONDUCTIVID.	C	CR	a	CC	CRC	CIC		CA	CY	CT	CE	CV				CS		
DENSIDAD	D	DR	DI	DC	DRC	DIC	200	DA	DY	DT	DE	DV				08		
VOLTAJE	E	ER	El	EC	ERC	EIC		EA	EY	ET	EE				100	ES		1
FLUJO	F	FR	FI	FC	FRC	FIC	FQ	FA	FY	FT	FE	FV	FCV	FSV	FG	FS		I
CORRIENTE	1	IR	1	IC	IRC	IIC	IQ	IA	IY	IT	IE					IS		
TIEMPO	K	KR	KI	KC	KRC	KIC	KQ	KA	KY	KT	KE	K٧	100			KS		I
NIVEL	L	LR	u	LC	LRC	LIC	2/2	LA	LY	LT	LE	٤V	LCV		LG	LS		I
HUMEDAD	M	MZ	MI	MC	MRC	MIC	1110	MA	MY	MT	ME	MV				MS		L
PRESION	P	PR	PI	PC	PRC	PIC	900	PA	PY	PT	PE	PV	PCV	PSV	2	PS		Τ
FRECUENCIA	S	SR	SI	SC	SRC	SIC	1	SA	SY	ST	SE	SV				SS		
VELOCIDAD	S	SR	SI	SC	SRC	SIC	SQ	SA	SY	ST	SE	SV				SS		Τ
TEMPERATURA	T	TR	TI	TC	TRC	TIC	200	TA	TY	TT	TE	TV	TCV	TSV		TS		
VISCOSIDAD	٧	VR	M	VC	VRC	MC	3//6	VA	VY	VT	VE	W			VG	VS		Ι
VIBRACION	Y	YR	YI	YC	YRC	YIC	3///	YA	YY	YT	YE					YS		Τ
PESO	W	WR	W	WC	WRC	WIC	WQ	WA	WY	WT	WE	WV			12	ws		
INDEFINIDO	X	XR	XI	XC	XRC	XIC		XA	XY	XT	XE	X٧				XS		I
POSICION(*)	Z	ZR	ZI	ZC	ZRC	ZIC	97	ZA	ZY	ZT	ZE	Z٧			ZG	ZS		1
MANUAL	Н	256		HC		HIC		HA			150	HV	1		100	HS		I





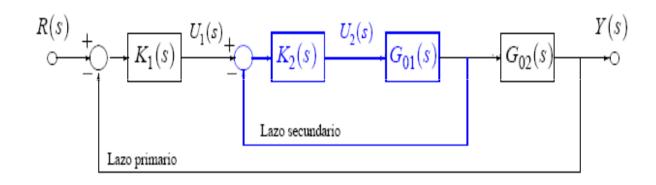




ELEMENTOS FINALES DE CONTROL

ACCION DEL ACTUADOR	EN CASO DE FALLO DE	AIRE (o' DE POTENCIA)
Fo Fo	FC	FO. V.C
ABRE EN FALLO (FAIL OPEN)	CIERRA EN FALLO (FAIL CLOSED)	ABRE EN FALLO A VIA A-C
FO A DB		
ABRE EN FALLO A MAS A-C y D-B	SE BLOQUEA EN FALLO (FAIL LOCKED)	POSICION INDETERMINADA EN FALLO (FAIL INDETERMINATE)

Control en el cual la señal de salida de un controlador ingresa como valor deseado en otro controlador; y la señal de salida de este último, actúa directamente sobre el elemento final de control.


Control en cascada

- Es una estructura alternativa de control para rechazar perturbaciones parcialmente medibles.
- La idea básica es realimentar variables intermedias entre la perturbación y la salida.

Estrategia del control en cascada

Estructura básica de un control en cascada:

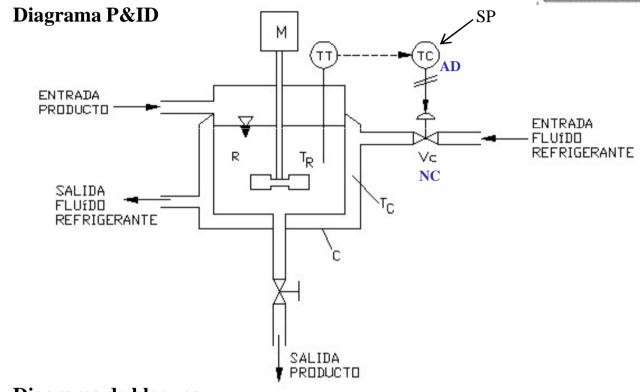
Lazo primario con un controlador primario $K_1(s)$.

Presenta básicamente dos lazos:

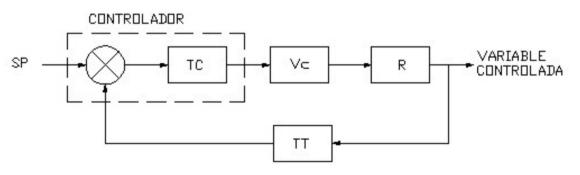
Lazo secundario con un controlador con un controlador secundario $K_2(s)$.

El control secundario se diseña para atenuar el efecto de la perturbación antes de que alcance a afectar significativamente la salida y(t).

<u>Ejemplo</u>: Control de temperatura en un reactor continuo. Aplicación de un lazo de control simple.



Perturbaciones del sistema:


- Caudal producto
- Temperatura producto
- Composición producto
- Presión fluido refrig.
- Temperatura fluido refrig.

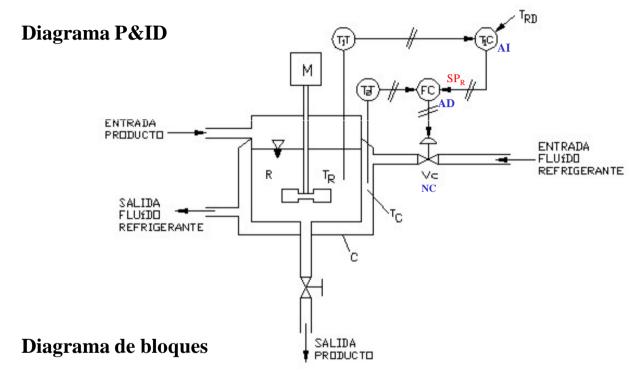
Inconvenientes:

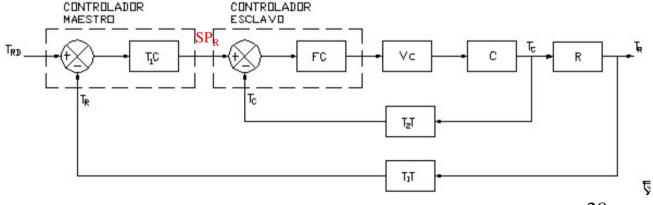
Para cambios en Tc y Pc, el sistema responde lento debido al retardo en la transferencia de energía.

Diagrama de bloques

Ę

<u>Ejemplo</u>: Control de temperatura en un reactor continuo. Aplicación de un lazo de control en cascada Temp.-Temp.



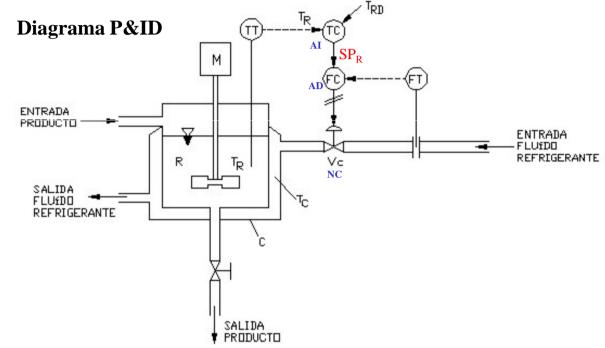

Mejora:

Este sistema mantiene cte Tc, evitando variaciones grandes en T_R .

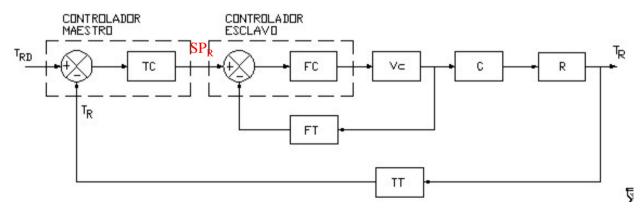
Inconvenientes:

Para variaciones de Pc el sistema pierde efectividad.

<u>Ejemplo</u>: Control de temperatura en un reactor continuo. Aplicación de un lazo de control en cascada Temp.-Caudal.



Mejora:


Este sistema tiene en cuenta las variaciones de Pc.

Inconveniente:

No ayuda p/ variaciones de Tc.

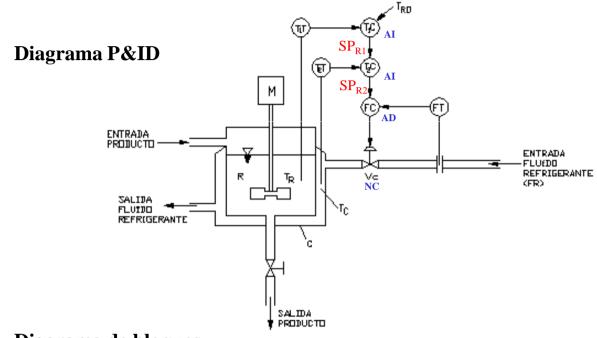
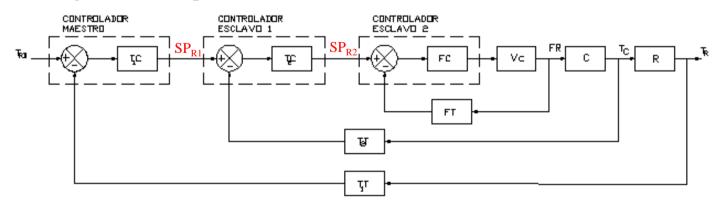
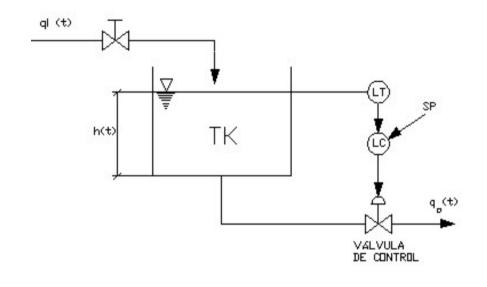


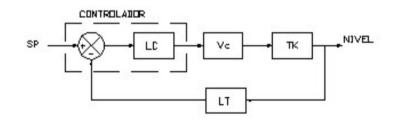
Diagrama de bloques

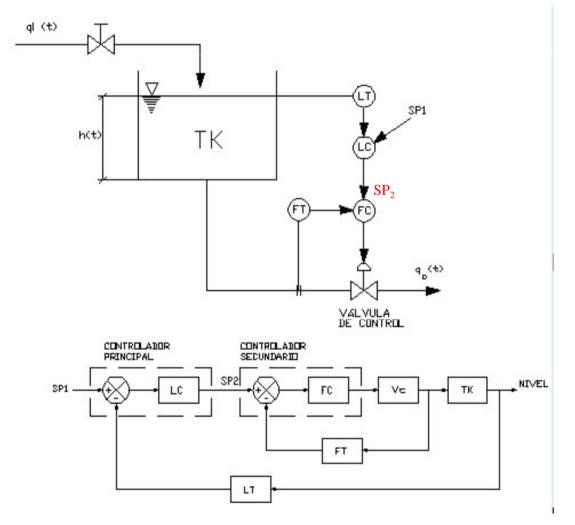


<u>Ejemplo</u>: Control de temperatura en un reactor continuo. Aplicación de un lazo de control con doble cascada Temp.- Temp.-Caudal.

Diagrama de bloques




Aplicación de un control de nivel en cascada.



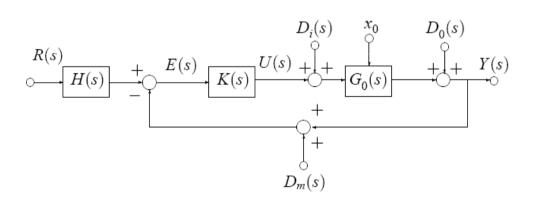
LAZO SIMPLE DE CONTROL

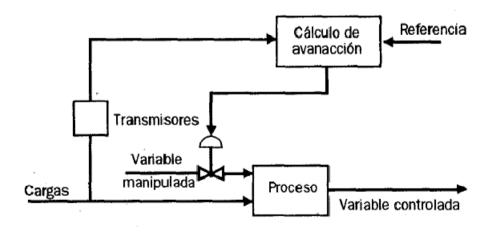
CASCADA NIVEL-CAUDAL

Ventajas del control en cascada

- Las perturbaciones del lazo secundario son corregidas antes que afecten la variable primaria.
- Los retrasos de fases en los procesos intermedios son disminuidos por el lazo secundario.
- Brindan ajustes precisos en la manipulación de fluidos másicos o energéticos.

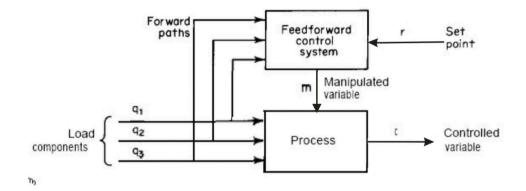
Condiciones para su aplicación

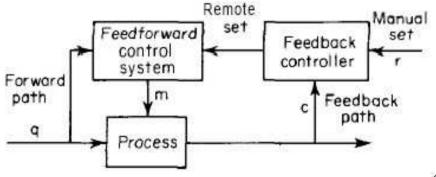

- Debe ser posible medir una variable intermedia de influencia sobre la variable controlada.
- La suma de los retardos de los elementos que integran el lazo secundario, debe ser menor a la suma de los elementos del lazo primario.



Control en el cual la información de una o más condiciones que puedan "perturbar" la variable controlada, son convertidas fuera de cualquier lazo de control, en una acción correctiva que se suma a la señal de salida del controlador para minimizar la desviación de dicha variable.

Estructura básica de un control en avanacción:





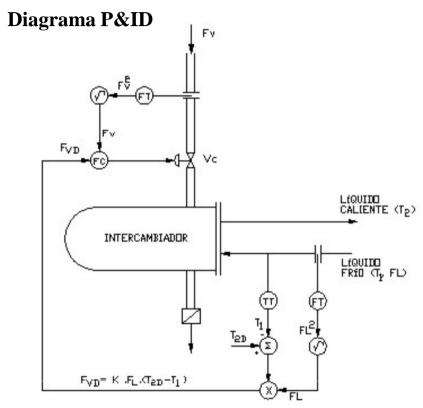
Característica de la Avanacción

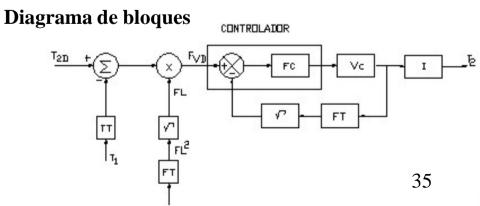
La Avanacción no altera la estabilidad de un sistema, ya que es un lazo de "control abierto adelantado". No forma parte de ningún lazo retroalimentado quién determina las características de estabilidad del conjunto.

Inyección de señales perturbadoras medibles en el lazo del proceso.

Estructura del control feedforward en relación al control feedback:

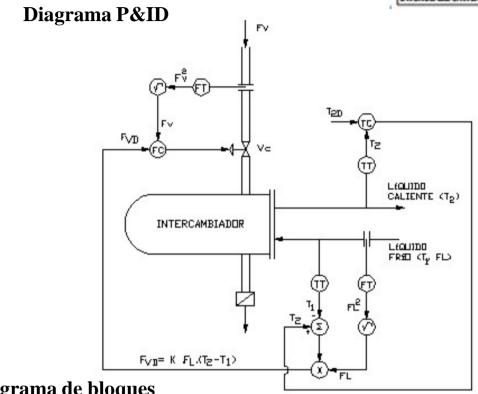
Ejemplo: Control de temperatura en un intercambiador de calor.


Variables características del sistema:

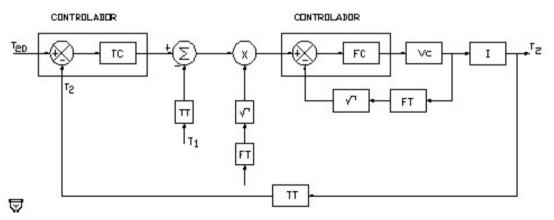

- Variable controlada: Temperatura T₂
- Variable manipulada: Caudal vapor F_V
- Perturbaciones: Temperatura T₁
 Caudal líquido F_L

Defectos del sistema implementado:

- Errores de exactitud en los cálculos.
- Velocidad de compensación dinámicamente no ajustada.



Ejemplo: Control de temperatura en un intercambiador (mejorado).



- La velocidad de compensación se ajusta con la inclusión de relés dinámicos.
- Los errores de exactitud se eliminan con la introducción de realimentación negativa.

Diagrama de bloques

Ventajas del control en Avanacción

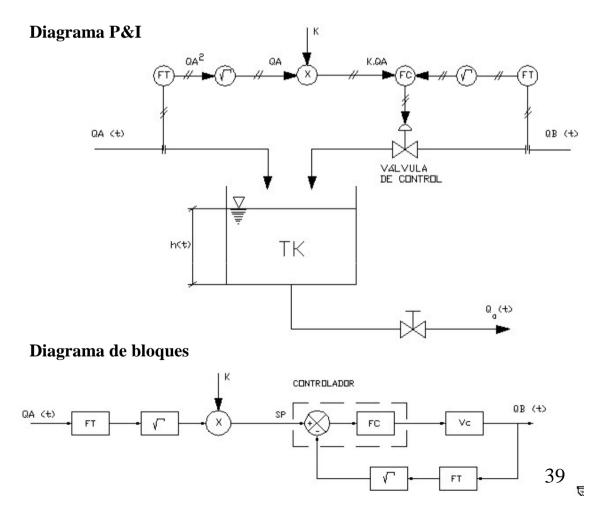
- Reducción del efecto de las perturbaciones sobre la variable controlada.
- Mejora en la respuesta de sistemas que poseen retardos importantes.
- Posibilidad de agregarse a un lazo de control por realimentación.

Condiciones para su aplicación

- Debe ser posible medir las variables perturbadoras del sistema.
- Debe poder introducirse realimentación negativa para asegurar una variable controlada constante.

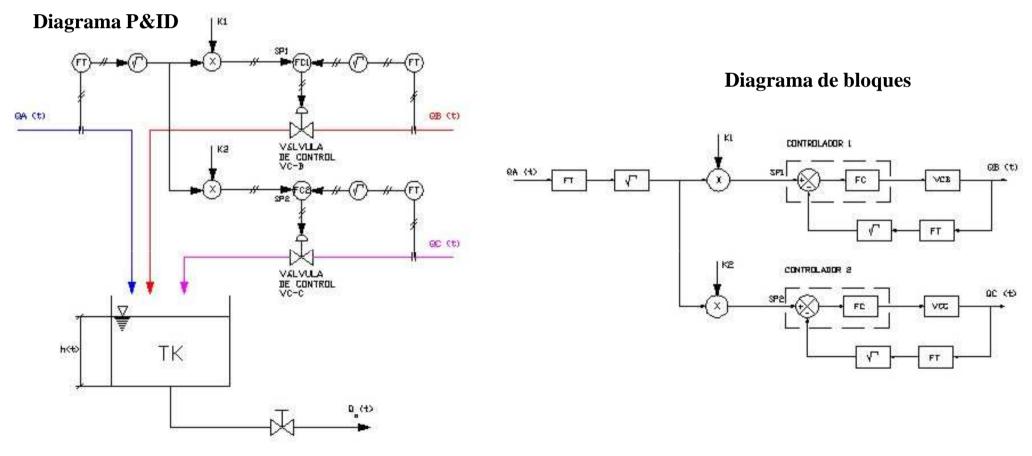
Conclusión

- Con el control en realimentación se asegura la estabilidad interna del lazo y el desempeño robusto en régimen permanente.
- Con el control FeedForward, se pueden hacer «retoques finos» al diseño para mejorar la respuesta transitoria del sistema.

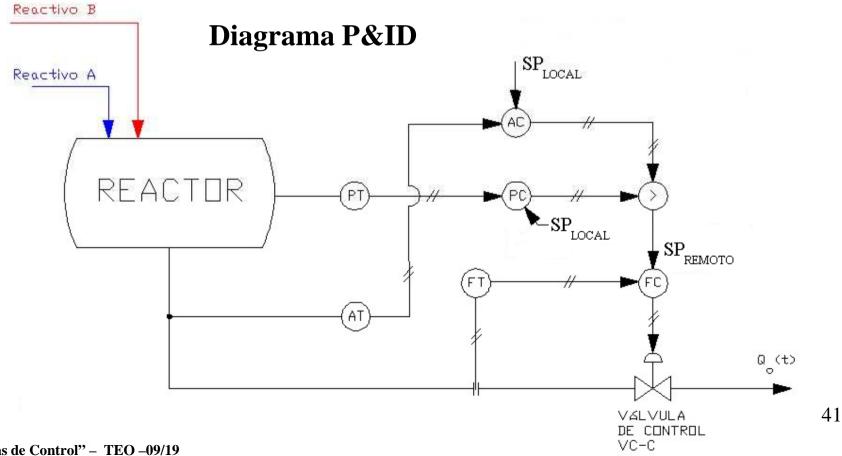


Control de Relación

Control en el cual permite mantener una relación fija entre dos o más variables, por lo general flujos.


- Se utiliza en procesos continuos de mezcla de flujos en los que se requiere mantener una cierta relación entre ellos.
- Requiere de cálculos aritméticos.
- Su implementación depende del proceso y del dispositivo de control.

Control de Relación Multiblending


Este control permite mezclar más de dos corrientes con distintas relaciones.

Control de Restricción

Este control permite restringir o relevar acciones de control en operaciones particulares donde se desee que una señal prevalezca sobre otra.

