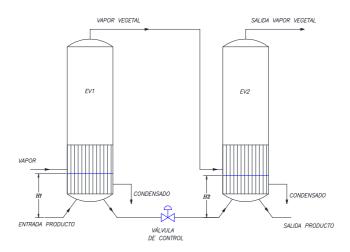


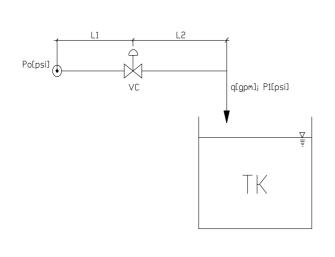
UNIVERSIDAD NACIONAL DE TUCUMÁN FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGÍA DEPARTAMENTO DE MECÁNICA CÁTEDRA "SISTEMAS DE CONTROL"


San Miguel de Tucumán, 26 de junio de 2017

ALUMNO:

TRABAJO PRÁCTICO Nº5: Válvulas de control.

PROBLEMA Nº1:


Seleccionar la válvula de control para el sistema de evaporación propuesto, teniendo en cuenta los datos de operación indicados en Tabla 1.

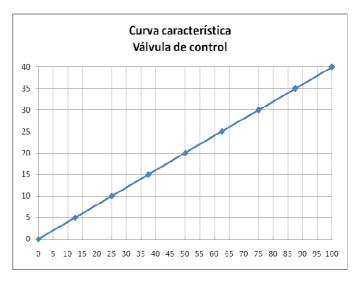


Tabla 1						
Producto a evaporar	Leche	Jugo caña	Vinaza 10°Bx	Jugo tomate		
Flujo de entrada producto [kg/h]	50	55	60	65		
Temperatura de entrada producto [°C]	30	40	50	60		
Presión de entrada producto [bar]	1,5	2,5	3,5	4,5		
Temperatura de salida producto [°C]	50	60	70	80		
Presión de salida producto [bar]	0,5	1,5	2,0	2,5		
Presión caja EV1 [bar]	0,30	0,40	0,50	0,60		
Presión caja EV2 [bar]	0,05	0,08	0,10	0,15		
Altura nivel H1 [mm]	300	400	500	600		
Altura nivel H2 [mm]	300	400	500	600		
Diámetro cañería [Plg]	3	4	5	6		

PROBLEMA N°2:

La válvula de control mostrada en la siguiente instalación, posee una característica inherente según se observa en el diagrama adjunto.

Si la instalación indicada presenta las siguientes características:

Se pide:

- 1- Encontrar la característica de la válvula instalada para: $L_2 = 0$, $L_2 = 15$ [m] y $L_2 = 30$ [m].
- 2- Graficar sobre la curva inherente de la válvula de control, la característica instalada de la misma para las condiciones indicadas en el apartado anterior.
- 3- Qué conclusiones obtiene del problema propuesto?.

PROBLEMA Nº3:

Si en el esquema de la instalación anterior, consideramos que presenta las siguientes características: $T_{fluido} = \dots [^{\circ}C], \not O_{pipe} = \dots [mm], L_1 = L_2 = \dots [m]$ y una caída de presión total del sistema con la válvula 100% abierta de $\Delta P = \dots [psi]$ y un caudal máximo de $qm\acute{a}x = \dots [m^3/h]$.

Se pide:

- 1- Determinar el Cv de la válvula instalada.
- 2- Dibuje la curva característica de la instalación.
- 3- Resolver el problema considerando una válvula con característica inherente de igual porcentaje (considere $m = m_0.e^{\beta x}$, con $m_0 = 0.03$).

PROBLEMA N°4:

Se desea seleccionar una válvula de control para suministro de gas natural (GN) a una caldera de vapor, que dispone de un quemador con las siguientes características:

Consumo nominal de GN [Nm ³ /h]	1000	1500	2000	2500
Consumo máximo de GN [Nm³/h]	1250	2000	2500	3200
Consumo mínimo de GN [Nm ³ /h]	200	400	450	500
Presión máxima de suministro de gas al quemador [g/cm²]	900	1000	1200	1500
Presión en la entrada de válvula [kg/cm²]	2,5	3,0	3,2	3,5

Se pide:

- a) Selección del tipo y tamaño de la válvula
- b) Materiales recomendados para la misma.
- c) Analice el grado de controlabilidad de la válvula.
- d) Analice posibles fallas de operación de la válvula y corrija la misma en el caso de presentarse inconvenientes.