
Enhancing Process Control
Education with the Control
Station Training Simulator
DOUG COOPER, DANIELLE DOUGHERTY

Department of Chemical Engineering, 191 Auditorium Road, Room 204, U-222, University of Connecticut,
Storrs, Connecticut 06269-3222

Received 10 August 1999; accepted 25 October 1999

ABSTRACT: A process control training simulator can enhance learning by integrating
the theoretical abstraction of textbooks with the tactile nature of the lab and plant. The
primary objective of a training simulator is education. It can motivate, help with visualiza-
tion, and provide hands-on practice and experience. This article explores the use and
benefits of the Control Station training simulator for process control education. Examples
presented illustrate how the standard curriculum can be enhanced with a series of hands-on
exercises and study projects. © 2000 John Wiley & Sons, Inc. Comput Appl Eng Educ 7: 203–212, 1999
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INTRODUCTION

Practice in applying textbook control theory can
greatly benefit the learning process. Such practice is
motivating, promotes critical thinking, facilitates un-
derstanding in the use and limitations of the theory,
and helps prepare students for the challenges of the
professional world. Too often, the application of text-
book theory is limited to solving questions listed at
the end of the chapter. A typical question is to have
the student expand or extend a mathematical devel-
opment presented in the book. Another is to provide
bits of data and then challenge the student to select
and employ a combination of formulas to obtain a
desired result.

Unfortunately, even when cleverly crafted, these
one-dimensional challenges fall short of providing
students the depth or breadth of practice required for
learning and comprehension. Thus, the Department of

Chemical Engineering at the University of Connecti-
cut, like most around the world, supplements the
textbook with laboratory exercises. Hands-on labora-
tory exercises are extremely important to learning
because they help students make the intellectual tran-
sition from theory to practice. The abstractions pre-
sented in textbooks are literally brought to life
through the tactile nature of lab experience.

The reality of the laboratory, unfortunately, is that
each study can take many hours and even days to
perform. Also, equipment failures and other problems
teach the important but not always appropriate lesson
that the real world can be uncertain. Thus, it can be
difficult to have the students explore more than a very
few central concepts in the lab.

An alluring method for providing students with the
significant hands-on practice critical to learning pro-
cess control is with a training simulator that provides
virtual experience much the way airplane and power
plant simulators do in those fields. The proper tool can
provide students with a broad range of focused engi-
neering applications of theory in an efficient, safe, and
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economical fashion. Such a simulator can work as an
instructional companion as it provides interactive case
study challenges which track along with classroom
lectures.

Process control is a subject area well suited to exploit
the benefits of a training simulator. Modern control
installations are computer based, so a video display is the
natural window through which the subject is practiced.
With color graphic animation and interactive challenges,
a training simulator can offer experiences which literally
rival those of the real world. These experiences can be
obtained risk free and at minimal cost, enabling students
to feel comfortable exploring nonstandard solutions at
their desk. If properly designed as a pedagogical tool
with case studies organized to present incremental chal-
lenges, learning can be enormously enhanced for process
control.

A CHEMICAL PERSPECTIVE

Each discipline views process control from a different
perspective. To help orient the reader, consider these
typical examples drawn from chemical process con-
trol:

Figure 1 Gravity-drained tanks graphic display.

Figure 2 First-order plus dead time model fit of doublet test data.
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Process variables: temperature, pressure, pres-
sure drop, level, flow, density, concentration

Final control elements: solenoid, valve, variable
speed pump or compressor, heater or cooler

Control algorithms: on/off, PID, cascade, ratio,
feed forward, multivariable decouplers, model pre-
dictive

Process Applications: reactors, separators, dis-
tillation columns, heat exchangers, furnaces.

The chemical engineering perspective considers each
process to be one of a kind. Consequently, every
control system can appear unique in design, imple-
mentation, and man–machine interface.

In addition, chemical processes are nonlinear and
nonstationary, and have long time constants, signifi-
cant dead time, and noisy measurement signals. Dis-
turbances occur from numerous sources including
loop interaction from other controllers in the plant.

EXAMPLE LESSONS

The following lessons were drawn from the Control
Station [1] process control training simulator to illus-

trate the value such software provides the curriculum.
We note that training simulators are distinguished in
this work from tools such as Matlab [2], which have
a primary function of design, analysis, and simulation.
The reader can download a free Control Station demo
at www.engr.uconn.edu/control.

P-Only Controller Performance

The computer graphic display for the gravity-drained
tanks process, shown in Figure 1, is two vessels
stacked one above the other. Liquid drains freely
through a hole in the bottom of each tank. The con-
troller output signal manipulates the flow rate of liq-
uid entering the top tank. The measured process vari-
able is liquid level in the lower tank. The disturbance
variable is a secondary flow out of the lower tank
from a positive displacement pump, so it is indepen-
dent of liquid level except when the tank is empty.

Students begin their studies with this process be-
cause its dynamic behavior is reasonably intuitive. If
they increase the liquid flow rate into the top tank, the
liquid level rise in the tanks. If they decrease the flow
rate, the level falls.

The traditional place to begin a course is with the

Figure 3 P-Only set point tracking results in offset.

CONTROL STATION TRAINING SIMULATOR 205



study of process dynamics. Students generate a step
test plot and compute by hand the first-order plus dead
time (FOPDT) model parameters: steady-state process
gain,KP, overall time constant,tP, and apparent dead
time, uP. After they have gained mastery with hand
calculations, they use tools that automate the model-
fitting task so they can explore more practical tests. A
Control Station fit of doublet test data is shown in
Figure 2 for the gravity-drained tanks.

Students use their FOPDT model parameters in
tuning correlations to compute a P-Only controller
gain,KC. Figure 3displays a simulator strip chart of
set point tracking performance for the gravity-drained
tanks under P-Only control. TheKC for the controller
is computed from the integral time weighted absolute
error (ITAE) correlation using the FOPDT model
parameters from Figure 2.

Then comes the what-if studies. The investigation
of Figure 4 explores howKC affects offset and damp-
ing for set point tracking under P-Only control. Stu-
dents also explore disturbance rejection under P-Only
control. Is the best tuning for set point tracking the
same as for disturbance rejection? And how is best
tuning defined?

PI Control and Nonlinear Behavior

The computer graphic for the countercurrent, shell
and tube, lube oil cooler (a kind of heat exchanger) is
shown in Figure 5. The controller output signal ma-
nipulates the flow rate of cooling liquid on the shell
side. The measured process variable is lube oil tem-
perature exiting on the tube side.

Students learn an important lesson about process
dynamics by studying the nonlinear character of this
process, as shown in Figure 6. The steady-state gain
of the process clearly changes as operating level
changes. Less obvious is that the time constant of the
process also changes.

For processes that have such a nonlinear character,
the performance of a controller will change as the
process moves across operating levels. Figure 7 illus-
trates this point. The exchanger is under PI control
and as the set point is stepped to different operating
levels, the nonlinear behavior of the process clearly
affects set point tracking performance. Thus, students
learn that a controller is designed for a specific or
design level of operation. The best practice is to
collect dynamic test data as near as practical to this
design operating level.

Figure 4 P-Only performance changes asKC changes.
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Figure 7 also shows that the heat exchanger has a
negative steady-state gain. Students learn that a com-
plete design includes specifying the sense of the con-
troller (reverse versus direct acting). They learn this
concept because if they enter it wrong, the controller
output will quickly drive the valve to either full open
or full closed.

For what-if studies, students explore how PI con-
troller tuning parameters interact and affect set point
tracking performance. Figure 8 shows a tuning map
that they develop from an orderly tuning investiga-
tion.

PID Control and Measurement Noise

Derivative action dampens oscillations because it re-
sists rapid movement in the measured process vari-
able. Students learn this by constructing Figure 9,
which is a portion of a tuning map for derivative
action. The center plot shows the set point tracking
performance of a PID controller tuned using the ITAE
for set point tracking correlation.

For all plots in Figure 9,KC andtI remain constant
and there is no measurement noise. The plot to the left
shows how the oscillating nature of the response
increases as derivative action is cut in half. The plot to
the right shows that when derivative action is too

Figure 6 Heat exchanger displays nonlinear behavior.

Figure 5 Heat exchanger graphic display.
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Figure 8 PI controller tuning impacts performance.

Figure 7 Nonlinear behavior impacts performance.
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large, it inhibits rapid movement in the measure pro-
cess variable, causing the rise time and settling time to
lengthen. When noise is added to the measured pro-
cess variable, students learn that derivative action
amplifies it and reflects it in the controller output
signal. Figure 10 illustrates this with a side-by-side
comparison of a PI and PID controller.

Students also compare derivative on error to deriv-
ative on measurement. Watching the derivative on
error “kick” after a set point step is a more memorable
experience than simply hearing about it. Derivative
filtering and four mode PID control are used in indus-
try to address the problems resulting from measure-
ment noise. Four-mode PID and filtering is scheduled
to be added to Control Station in the near future.

Cascade, Feed Forward, and Disturbance
Rejection

The jacketed reactor graphic, shown in Figure 11 for
the cascade case, is a continuously stirred tank reactor
in which an irreversible exothermic reaction occurs.
Residence time is constant in this perfectly mixed
reactor, so the steady-state conversion from the reac-
tor can be directly inferred from the temperature of
the reactor product stream. To control reactor temper-
ature, the vessel is enclosed with a jacket through
which a coolant passes.

The controller output manipulates the coolant flow
rate through the jacket. The measured process vari-
able is product exit stream temperature. If the exit

Figure 10 Measurement noise is amplified and reflected in controller output signal.

Figure 9 Derivative action affects oscillatory behavior.

CONTROL STATION TRAINING SIMULATOR 209



stream temperature is too high, the controller in-
creases the coolant jacket flow to cool down the
reactor. The disturbance variable is the inlet temper-
ature of coolant entering the cooling jacket.

The jacketed reactor can be run in three configu-
rations: feedback control, feed forward with feedback
trim, and cascade control as shown in Figure 11.

When the cooling jacket inlet temperature changes,
the ability to remove heat changes and the control
system must compensate for this disturbance. Cascade
and feed forward are control strategies used for im-
proved disturbance rejection. Cascade design involves
the tuning of two controllers, as shown in Figure 11.
Feed forward requires identification of an appropriate
process and disturbance model.

The rejection of a change in the disturbance vari-
able (jacket inlet temperature) for a single-loop PI
controller is compared in Figure 12 with a PI with
feed-forward controller. The benefit of feed forward is
clear for this process because for the same distur-
bance, the process variable has a much smaller max-
imum deviation and a faster settling time.

Students compare single loop, feed forward, and
cascade control. They investigate tuning issues, which
PID modes to use in a cascade, the order of the
models needed for feed-forward design, plant–model
mismatch, dead time issues, and a host of other inter-
esting challenges.

Control Loop Interaction and Decoupling

The distillation column graphic, shown in Figure 13,
is a binary distillation column. The column has two
measured process variables and two manipulated vari-
ables. The reflux rate is used to control distillate

Figure 12 Benefits of feed-forward control.

Figure 11 Jacketed reactor under cascade control.
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purity and the steam rate is used to control the purity
of the bottoms stream.

Students use this process to explore the interac-
tions that can occur in such multicontroller applica-
tions. Control loop interaction occurs because when
the distillate purity out of the top of the column is too
low, the top controller compensates by increasing the

flow of cold reflux into the column. This increased
reflux flow will indeed cause an increase in the dis-
tillate purity. However, the additional cold reflux will
work its way down the column trays and eventually
begin to cool the bottom of the column. This cooling
causes the purity of the bottoms stream to move off
set point and produce a controller error.

The bottom controller compensates by increasing
the flow of steam into the reboiler. This produces an
increase in hot vapors traveling up the column, which
eventually causes the top of the column to begin to
heat up. The result is that distillate purity again be-
comes too low. In response, the top controller com-
pensates by again increasing the flow of cold reflux
into the column.

This controller “fight” is shown on the left side of
Figure 14. The upper trace shows the distillate com-
position responding to a step set point change. Con-
troller interaction causes the bottoms composition,
shown in the lower trace, to react unfavorably.

Decouplers are feed-forward elements where the
measured disturbance is the controller output signal of
another loop on the process. Two decouplers are re-
quired to compensate for loop interaction, one for
each controller. Like a feed-forward element, each
decoupler requires identification of a process and dis-
turbance model. The right side of Figure 14 shows
that with decouplers in place, this loop interaction is
dramatically reduced.

Figure 14 Distillation column shows loop interaction..

Figure 13 Distillation column graphic display.
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Students explore different controller modes, loop
tunings, model structures, and many other design is-
sues. With two controllers and four models for com-
plete decoupling, students also learn how important
bookkeeping is to the control designer.

CONCLUSION

We have presented some examples of the lessons and
challenges a training simulator can provide. Space
prohibits presentation of other studies available in
Control Station, including the control of integrating
processes, the use of the Smith predictor model pre-
dictive controller, and a host of process identification
methods and procedures.

We stress that we do not believe a training simu-
lator is better than or a replacement for real lab
experiences. In fact, we believe that hands-on studies

with actual equipment are fundamental to the learning
process. We are of the opinion, however, that a proper
training simulator can provide students with a broad
range of meaningful experiences in a safe and effi-
cient fashion. These experiences can be obtained risk
free and at minimal cost, enabling students to feel
comfortable exploring nonstandard solutions at their
desk. If properly designed, a training simulator can
bridge the gap between textbook and laboratory, en-
abling significantly enhanced learning for process
control theory and practice.
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