Tema 6: ESPECTRO EXPANDIDO. DETECCIÓN EN PRESENCIA DE RUIDO, de señales moduladas linealmente o en ángulo. Cálculo de la relación señal/ruido de postdetección o la probabilidad de error en función de la relación señal/ruido de pre-detección. TEORÍA DE LA INFORMACIÓN: información, entropía. Capacidad de canal.

Bibliografía:

- 1. Cap. 16, Carlson-Crilly-Rutledge, "Communication Systems".
- 2. Cap. 8, Lathi. "Introducción a la teoría y Sistemas de comunicación"

<u>INFORMACIÓN</u>

$$I_i \stackrel{\triangle}{=} -\log_b P_i = \log_b \frac{1}{P_i}$$

Propiedades

$$I_i \ge 0$$
 for $0 \le P_i \le 1$
 $I_i \to 0$ for $P_i \to 1$
 $I_i > I_i$ for $P_i < P_i$

<u>INFORMACIÓN</u>

$$I_i \stackrel{\triangle}{=} -\log_b P_i = \log_b \frac{1}{P_i}$$

Propiedades

$$P(x_i x_j) = P_i P_j; \text{then}$$

$$I_{ij} = \log_b \frac{1}{P_i P_j} = \log_b \frac{1}{P_i} + \log_b \frac{1}{P_i} = I_i + I_j$$

ENTROPÍA

M different symbols, i.e., an M-ary alphabet.

$$\sum_{i=1}^{M} P_i = 1$$

$$H(X) \stackrel{\triangle}{=} \sum_{i=1}^{M} P_i I_i = \sum_{i=1}^{M} P_i \log \frac{1}{P_i}$$
 bits/symbol

$$H(X) \stackrel{\triangle}{=} \sum_{i=1}^{M} P_i I_i = \sum_{i=1}^{M} P_i \log \frac{1}{P_i}$$
 bits/symbol

$$0 \le H(X) \le \log M$$

information rate

$$R \stackrel{\triangle}{=} rH(X)$$
 bits/sec

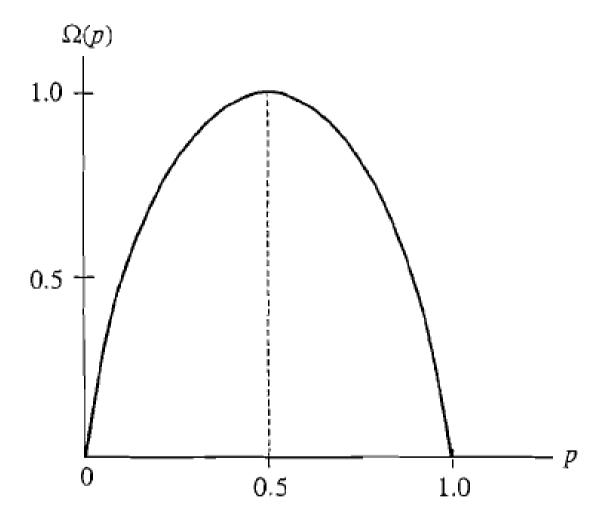


Figure 16.1-1 Binary entropy function

Suppose a source emits r = 2000 symbols/sec selected from an alphabet of size M = 4 with symbol probabilities and self information listed in Table 16.1–1. Equation (6) gives the source entropy

- **H**5
- ¿R?
- ¿R_b?

Discrete memoryless source

$$R = rH(X)$$

Binary encoder

$$r_b\Omega(p) \le r_b$$

Figure 16.1–3

$$R = rH(X) = r_b\Omega(p) \le r_b \text{ or } r_b/r \ge H(X).$$

average code length.

$$\overline{N} = r_b/r$$

$$\vec{N} = \sum_{i=1}^{M} P_i N_i$$

Medida de eficiencia de la codificación

Shannon's source coding theorem

$$H(X) \leq \bar{N} \leq H(X) + \epsilon$$

Kraft inequality.

$$K = \sum_{i=1}^{M} 2^{-N_i} \le 1$$

Table 16.1–2 Illustrative source codes

$\overline{x_i}$	$\overline{P_i}$		Code I	Code II	Code III	Code IV
\overline{A}	1/2		00	0	0	0
В	1/4		01	1	01	10
С	1/8		. 10	10	011	110
D 1/8			11	11	0111	111
		\overline{N}	2.0	1.25	1.875	1.75
		K	1.0	1.5	0.9375	1.0

Table 16.1-3 Shannon-Fano coding

			Co					
x_i	P_i	1	2	3	4	5	6	Codeword
Α	0.50	0						0
В	0.15	1	0	0				100
С	0.15	1	0	1				101
D	0.08	1	1	0				110
E	0.08	1	1	1	0			1110
F	0.02	1	1	1	1	0		11110
G	0.01	1	1	1	1	1	0	111110
Н	0.01	1	1	1	1	1	1	111111

Capacidad del canal

$$C = B \log_2 \left(1 + \frac{S}{N} \right)$$

$$M=rac{\sqrt{S+N}}{\sqrt{N}}=\sqrt{1+rac{S}{N}}$$

(Ver Lathi cap. 8.2)