MATERIALES Y DISPOSITIVOS ELECTRÓNICOS CONDUCTORES

Cuestionario Guía Nº 2

CARACTERÍSTICA	COBRE	ALUMINIO	SILICIO
Número Atómico	29	13	14
Densidad (g/cm³)	8,96	2,7	2,34
Átomos / cm³	8,49 x 10 ²²	6,0 x 10 ²²	5 x 10 ²²
Temperatura de fusión C	1083	660	1412
Conductibilidad 1/Ωcm	5,9 x 10⁵	3,75 x 10⁵	2,96 x 10 ⁻⁶ Intrínseco
Conductibilidad Térmica			
W/m°K a T=0°K	397	238	138
Capacidad Térmica J/kg°K	380	917	729

- 1. Para un alambre de Cu de 1mm² de sección y un metro de largo por el que pasa una corriente de 5 A, calcular los siguientes valores:
 - a. Velocidad de deriva de los electrones libres dentro del Cu.
 - b. Tiempo medio entre choques de los electrones libres en el Cu.
 - c. Caída de tensión y campo eléctrico en el conductor.
- 2. Un alambre de cobre de 1 mm² se funde cuando circula una corriente de 98 A. Suponiendo que para el 95 % de esta corriente, todavía no se fundió, calcule para esa corriente (la del 95 %) el campo eléctrico E_{max} que soporta antes de fundirse. Compare este campo con el calculado en el punto c) del problema 1 y con 1E3 V/cm (límite de validez de la ley de Ohm).
- 3. Calcular el aumento de temperatura necesario para que un alambre de cobre aumente su resistencia un 10% sobre el valor a la temperatura inicial. ¿Cuánto debería aumentar la temperatura para que se duplique la resistencia inicial?
- 4. ¿Cómo varia la concentración de electrones en un conductor, cuando aumenta la temperatura? ¿Por qué? Calcular la concentración de electrones en el Cobre, Aluminio, y Plata suponiendo que cada átomo contribuye con un electrón, compare esta afirmación con la configuración electrónica de cada metal.
- 5. Calcular la concentración de portadores del Aluminio sabiendo que: si en el problema 1, se reemplaza el alambre de Cu por uno de Al, la velocidad de deriva de los electrones vale 0.052 cm/s. Compare su resultado con los obtenidos en el punto anterior.
- 6. ¿Cómo varía el tiempo medio entre choques con el aumento de la temperatura? ¿Por qué?
- 7. Que es la movilidad de los portadores. Calcular la movilidad de los electrones en el Cu y el Al?. ¿Cómo varía la movilidad con el aumento de la temperatura? ¿Por qué?
- 8. Para el conductor del problema 1; calcular el camino libre medio suponiendo que la velocidad térmica (v_{th}) vale 1,6 x 108 cm/s en el Cu a una temperatura de 300 °K
- 9. ¿Cómo es el grado de ocupación del diagrama de bandas a cero grado Kelvin en conductores, aisladores y semiconductores? ¿Por qué?
- 10. ¿Cómo justifica la gran diferencia de conductibilidad entre el Cobre y el Silicio intrínseco?
- 11. Distintos materiales, (Cu y Si) ¿mostrarán diferentes movilidades ante el mismo campo eléctrico aplicado? ¿Por qué?
- 12. ¿En qué casos se manifiesta la saturación de velocidad de deriva por influencia del campo eléctrico? ¿Por qué? ¿Cómo varía la movilidad con el aumento del campo eléctrico? ¿Por qué?
- 13. Suponiendo la validez de la ley de ohm, calcular la densidad de corriente y el valor de campo eléctrico que provoca una v_d (velocidad de deriva) del 1% de v_{th} (velocidad térmica) para el Cobre (v_{th} = 1,6 x 108 cm/s a T= 300 °K) y el Silicio (v_{th} = 1,2 x 107 cm/s a T= 300 °K). Comparar los resultados.