Semiconductores Extrínsecos

Concentración de portadores

- Silicio con N_D [atomos / cm³] de impurezas donadoras

Concentración de electrones

$$n = (N_D + n_0) [atomos / cm^3]$$

N_D: Generación por ionización de impurezas

n_o: Generación intrínseca

$$N_D >> n_0$$

$$N_D \approx 10^{20} >> n_0 \approx 10^{10}$$

$$n = (N_D + n_0) \approx N_D [atomos / cm^3]$$

$$n \approx N_D$$
 [átomos / cm³]

Concentración de huecos

$$p = p_0$$
 [átomos / cm³]

p_o: Generación intrínseca

$$p \approx p_0$$
 [átomos / cm³]

En equilibrio termodinámico

$$n \times p = n_i^2$$

$$N_D \times p = n_i^2$$

$$p \approx \frac{n_i^2}{N_D}$$

Semiconductor con N_D impurezas donadoras

 $n \approx N_D$

Semiconductor con N_A impurezas aceptoras

Semiconductor tipo p

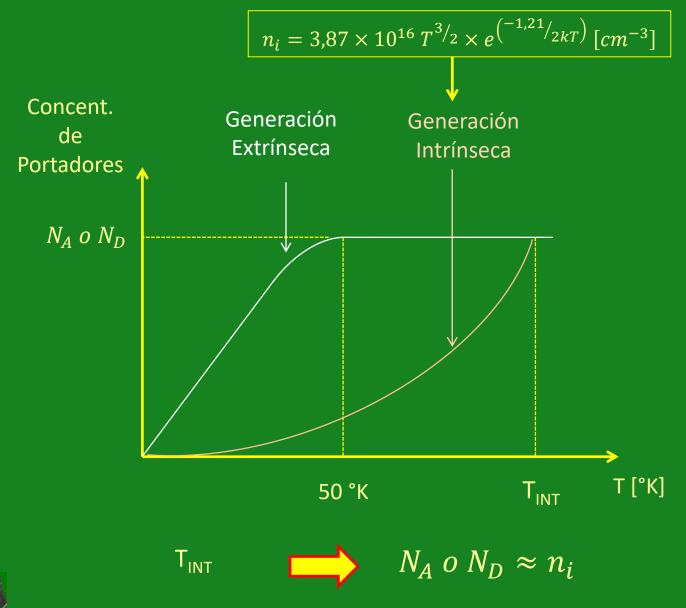
Semiconductor tipo n

$$p \approx \frac{n_i^2}{N_D}$$

 p_n

$$n \approx \frac{n_i^2}{N}$$

 $p \approx N_A$



 n_n

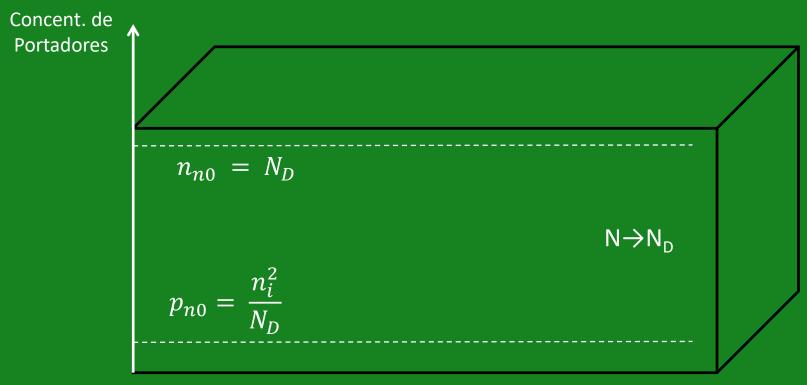
Temperatura intrínseca

ni	T [°K]	T [°C]
4,35E+04	198	-75
2,76E+06	223	-50
7,74E+07	248	-25
1,19E+09	273	0
1,18E+10	298	25
8,21E+10	323	50
4,38E+11	348	75
1,88E+12	373	100
6,74E+12	398	125
2,10E+13	423	150
5,76E+13	448	175
1,43E+14	473	200
3,26E+14	498	225
6,88E+14	523	250
1,36E+15	548	275
2,54E+15	573	300

Conductividad

Semiconductor Intrínseco

$$\sigma = q n \mu_n + q p \mu_p$$


- Para el semiconductor intrínseco la concentración de portadores depende de la temperatura n y p ↑ con T
- Para el semiconductor extrínseco la concentración de portadores es fija no varia con T

Generación y Recombinación

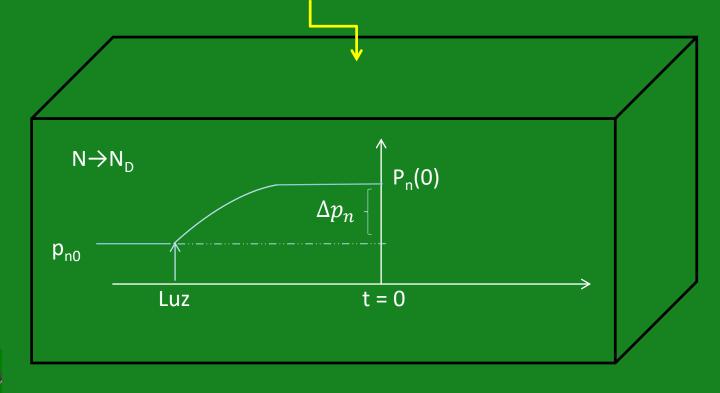
- Semiconductor tipo N con N_D [atomos / cm³] de impurezas donadoras

En equilibrio termodinámico

Iluminamos (Damos energía)

$$\Delta p = p_n - p_{n0}$$

 $\Delta n = n_n - n_{n0}$


Por la energía se generan pares electrón-hueco

$$\Delta p = \Delta n$$

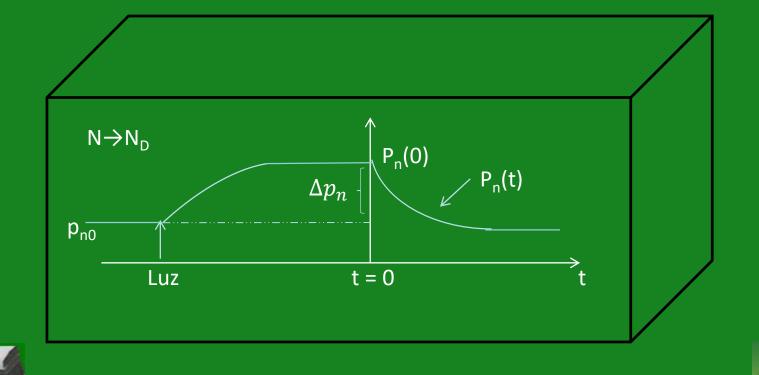
$$\frac{\Delta n}{n_{n0}} \ll \frac{\Delta p}{p_{n0}}$$

La variación relativa de los minoritarios (huecos) es mucho mayor que la de los mayoritarios (electrones)

Para t = 0 retiramos la iluminación y analizamos como retorna la concentración de minoritarios (huecos) al estado inicial (antes de iluminar)

En equilibrio
$$\Longrightarrow \frac{dp_n}{dt} = 0 \Longrightarrow p_n = p_{n0} \Longrightarrow g = \frac{p_{n0}}{\tau_p}$$
 $dp_n = p_{n0} - p_n$

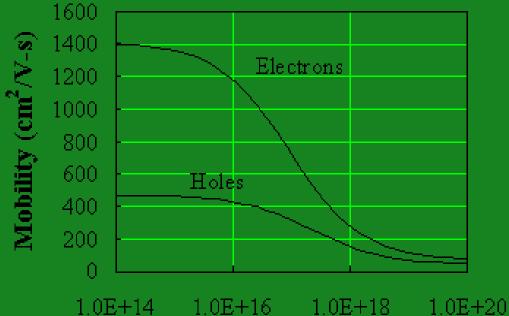
Defino
$$p_n' = p_n - p_{n0} \implies \frac{dp_n'}{dt} = -\frac{p_n'}{\tau_p}$$



Solución de
$$\Rightarrow \frac{dp'_n}{dt} = -\frac{p'_n}{\tau_p} \Rightarrow p'_n(t) = p'_n e^{-t/\tau_p}$$

$$p_n(t) - p_{n0} = [p_n(0) - p_{n0}]e^{-t/\tau_p}$$

$$p_n(t) = [p_n(0) - p_{n0}]e^{-t/\tau_p} + p_{n0}$$


Movilidad en semiconductores extrínsecos

 μ (Movilidad)

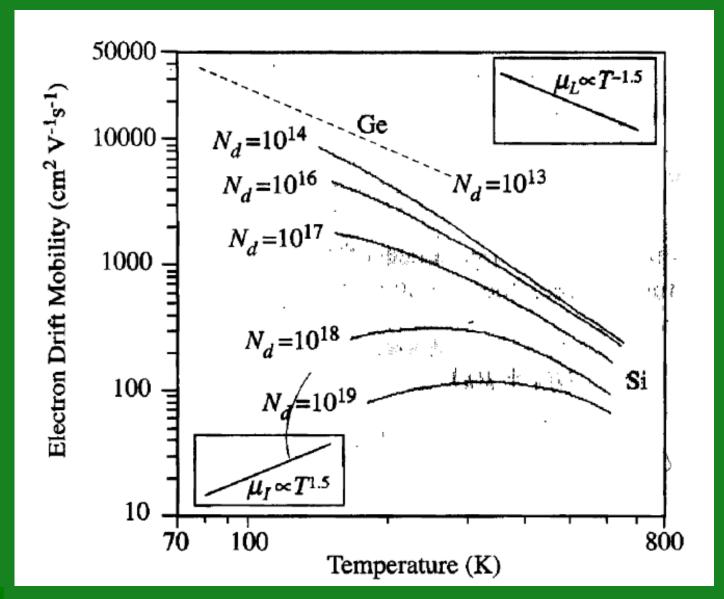
f(Concentracion de Impurezas)

f(Tipo de Impurezas)

	Arsenic	Phosphorous	Boron
μ_{\min} (cm ² /V-s)	52.2	68.5	44.9
μ_{max} (cm ² /V-s)	1417	1414	470.5
$N_{ m r}$ (cm ⁻³)	9.68 x 10 ¹⁶	9.20 x 10 ¹⁶	2.23 x 10 ¹⁷
α	0.68	0.711	0.719

$$\mu = \mu_{min} + \frac{\mu_{MAX} - \mu_{min}}{1 + \left(\frac{N}{N_r}\right)^{\alpha}}$$


Doping density (cm⁻³)



- Las impurezas son átomos extraños en el Xtal (imperfecciones)
- Mas impurezas menos movilidad
- Las impurezas tienen carga eléctrica cuando se ionizan (generan el portador) por ello la temperatura afecta mejorando la movilidad (tiempo de interacción disminuye)

Movilidad en semiconductores extrínsecos

Bibliografia

- Electrónica Integrada "Millman y Halkias" Capitulo 2
 - Devices Electronics for Integrated Circuits 2° Edition –
 Muller y Kamins Capitulo 1
 - Principles of Semiconductor Devices "B. Van Zeghbroeck"
 - Capitulo 2.7

