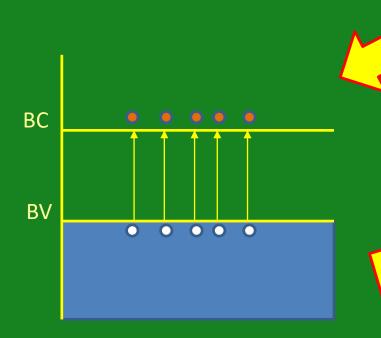

# Materiales Semiconductores

Estructura de Bandas



- Los materiales semiconductores a 0 °K tienen la banda de conducción vacía y la banda de valencia completamente llena
- El ancho de la Banda Prohibida es del orden de 1 eV.
- Cuando aumenta la temperatura, por el bajo valor de E<sub>g</sub>, los electrones de la banda de valencia adquieren energía y pueden saltar a la banda de conducción






 Con temperatura los electrones de la Banda de Valencia pueden saltar a la Banda de Conducción

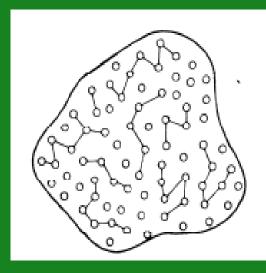
- Cada electrón que llega a la Banda de Conducción genera un portador libre para transportar corriente
- Cada electrón que salta a la Banda de Conducción genera un lugar libre (hueco) en la Banda de Valencia la que es así una banda "parcialmente llena" y puede conducir corriente
- El proceso que lleva electrones a la Banda de Conducción dejando huecos en la Banda de Valencia se denomina "Generación intrínseca"
- Por cada electrón se genera un hueco y la cantidad generada depende de la Temperatura

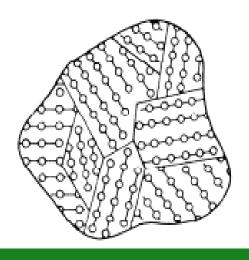


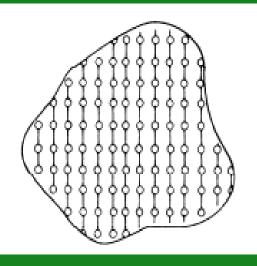




n (concentración de electrones en la Banda de Conducción) → f (T)


p (concentración de huecos en la Banda de Valencia) → f (T)




# Materiales Semiconductores

- Estructura Xtalina.
- De acuerdo a la disposición atómica, un semiconductor puede ser:







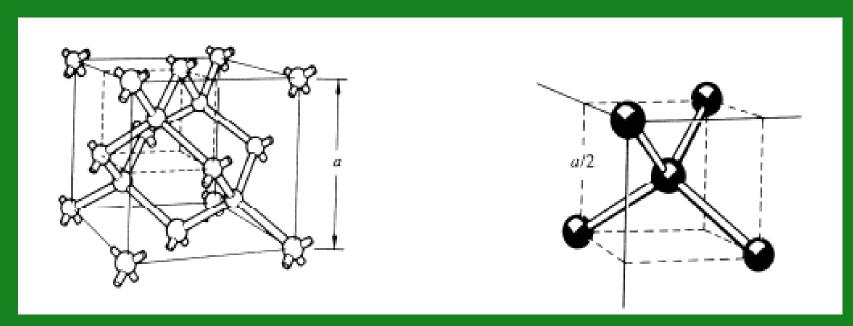
Amorfo
No existe orden
a largo alcance

Policristalino
Totalmente ordenado
por segmentos

Cristalino
Los átomos en el
sólido forman un
conjunto totalmente
ordenado



- <u>Sólido Amorfo</u>: no se reconoce ningún orden a largo alcance, es decir, la disposición atómica en cualquier porción de este material es totalmente distinta a la de cualquier otra porción.
- Sólido Policristalino: está formado por subsecciones cristalinas no homogéneas entre sí.


• <u>Sólido Cristalino:</u> los átomos están distribuidos en un conjunto tridimensional ordenado.

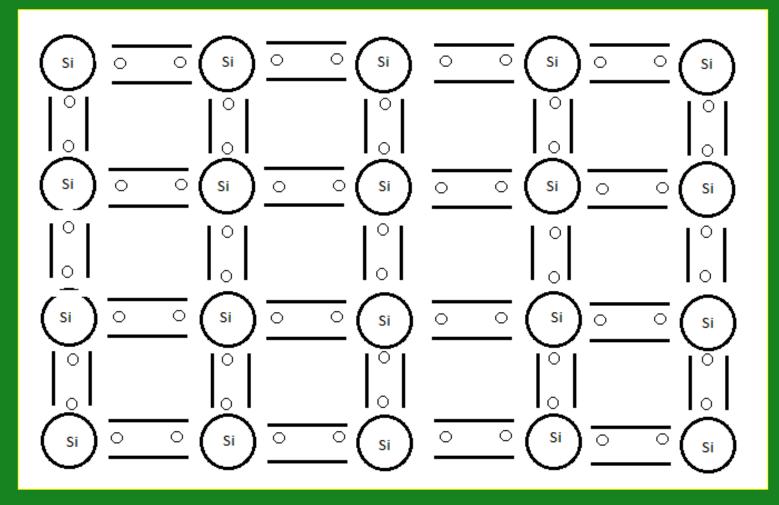




# Estructura Xtalina del Silicio

- La configuración electrónica del Si es: 1s² 2s² 2p6 3s² 3p²
- La estructura Xtalina del Silicio forma una UNION COVALENTE
- Cada átomo comparte un electrón con los 4 átomos vecinos








#### Estructura Xtalina del Silicio a 0 °K

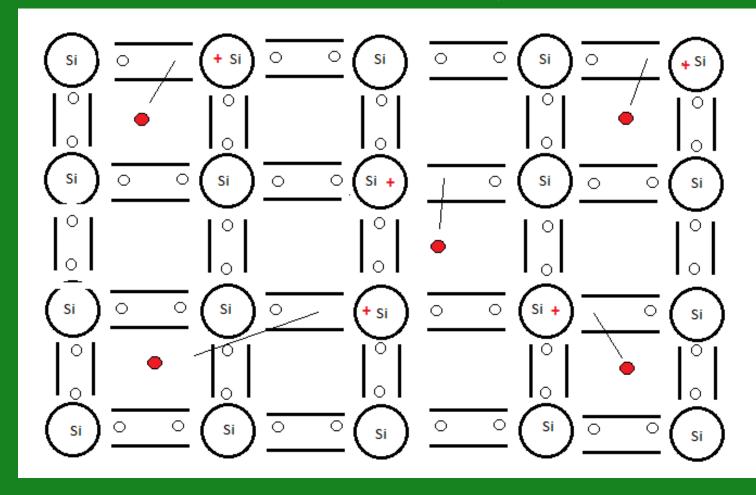
Atomo Silicio Ligaduras

#### Estructura Xtalina del Silicio a 0 °K



- Todos los electrones están ligados a los átomos
- No hay portadores libres en el Xtal.






Estructura Xtalina del Silicio para T > 0 °K

Atomo Silicio Ligaduras



## Estructura Xtalina del Silicio para T > 0 °K



- Algunos electrones se liberan de los enlaces covalentes dejando una carga positiva fija (en el nucleo)
- Los electrones pueden moverse libremente en el Xtal.





$$n = p = n_i (T)$$

n<sub>i</sub> (T) → Concentración Intrínseca

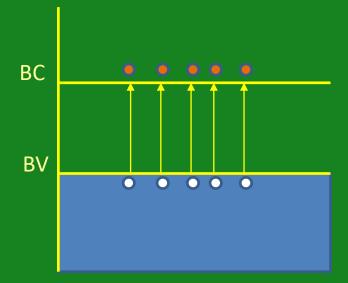
Para el Si



$$n_i = 3.87 \times 10^{16} \, T^{3/2} \times e^{\left(-1.21/_{2kT}\right)} \, [cm^{-3}]$$

- Los semiconductores intrínsecos tienen igual cantidad de electrones libres que de huecos (n = p)
- El hueco es una partícula móvil de carga positiva
- El movimiento de un hueco implica el movimiento de varios electrones
- La movilidad de los huecos es menor que la de los electrones
- La concentración de portadores en los semiconductores no es fija, depende de la Temperatura (aumenta con la Temperatura)



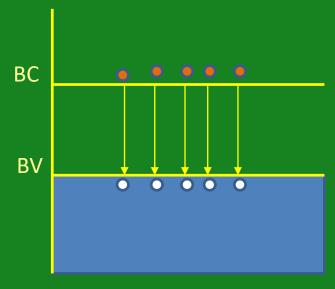



| ni       | T [°K] | T [°C] |
|----------|--------|--------|
| 4,35E+04 | 198    | -75    |
| 2,76E+06 | 223    | -50    |
| 7,74E+07 | 248    | -25    |
| 1,19E+09 | 273    | 0      |
| 1,18E+10 | 298    | 25     |
| 8,21E+10 | 323    | 50     |
| 4,38E+11 | 348    | 75     |
| 1,88E+12 | 373    | 100    |
| 6,74E+12 | 398    | 125    |
| 2,10E+13 | 423    | 150    |
| 5,76E+13 | 448    | 175    |
| 1,43E+14 | 473    | 200    |
| 3,26E+14 | 498    | 225    |
| 6,88E+14 | 523    | 250    |
| 1,36E+15 | 548    | 275    |
| 2,54E+15 | 573    | 300    |

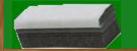


 Cuando un electrón salta de la banda de valencia a la banda de conducción

- Se generan dos portadores
  - Un electrón en la banda de conducción
  - Un hueco en la banda de valencia
- La concentración de portadores generados es función de la Temperatura






#### Cuando un electrón salta de la banda de conducción a la banda de valencia

- Desaparecen dos portadores
  - Un electrón en la banda de conducción
  - Un hueco en la banda de valencia
- La recombinación es función de la concentración de huecos y electrones



• Tiempo de vida medio: tiempo promedio que permanece un electrón en la banda de conducción antes de recombinarse



Recombinación



- En equilibrio termodinámico la Generación es igual a la Recombinación y  $n = p = n_i$
- g (T) → Tasa de generación proporcional a la temperatura
- R → Tasa de recombinación proporcional a la concentración de huecos y electrones

Variación de la concentración de electrones respecto al tiempo

$$\frac{dn}{dt} = g(T) - Rnp$$

Variación de la concentración de huecos respecto al tiempo

$$\frac{dp}{dt} = g(T) - Rnp$$

En equilibrio termodinámico

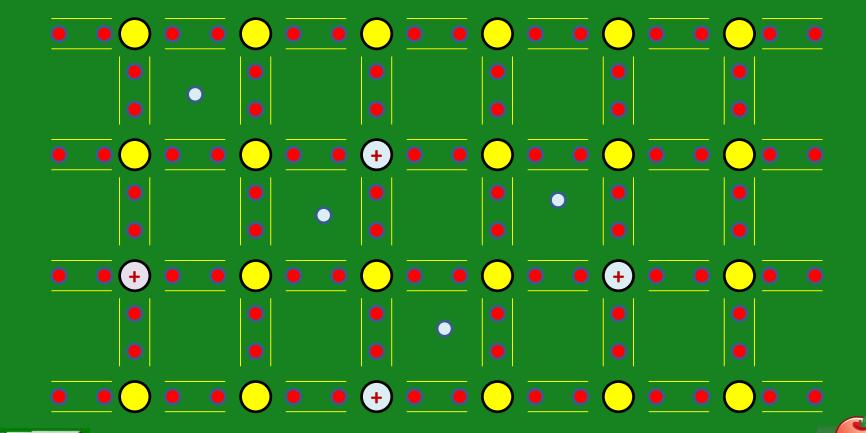
$$\frac{dn}{dt} = \frac{dp}{dt} = 0$$
 Generación = Recombinación

$$q(T) = R n_i^2$$

$$g(T) = R n_i^2 \qquad 0 = R n_i^2 - Rnp$$

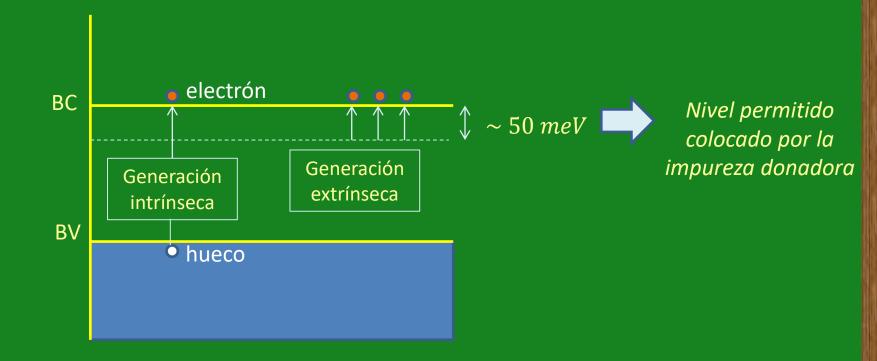
$$np = n_i^2$$






Semiconductores tipo N

Impurezas Donadoras


Átomo Silicio

Átomo Grupo V (P, As, Sb)

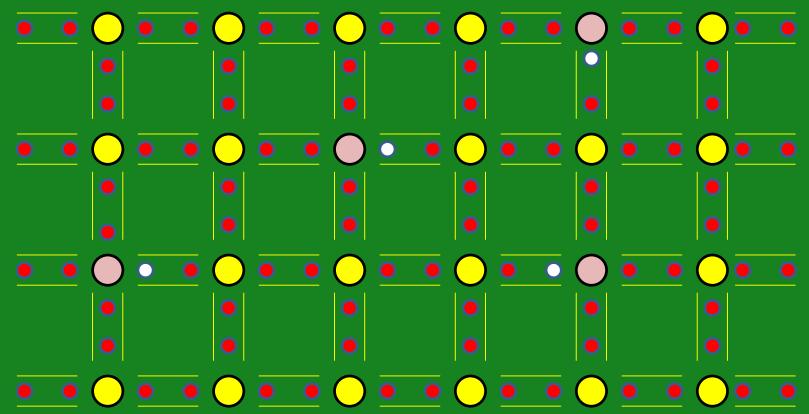


Semiconductores tipo N

Banda de Energía





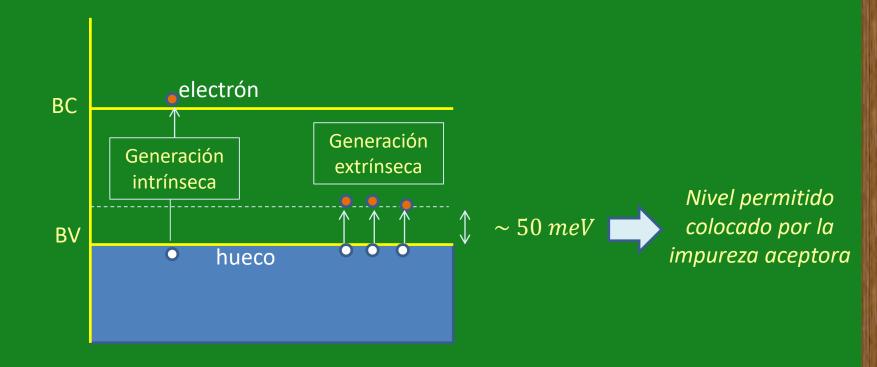



Semiconductores tipo P

Impurezas Aceptoras












Semiconductores tipo P

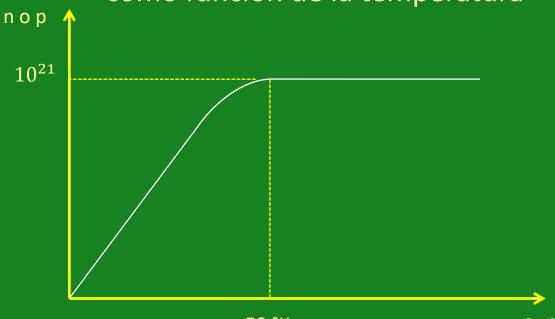
Banda de Energía










#### Máxima concentración de impurezas que pueden colocarse en el semiconductor

Solubilidad solida



Concentracion del Si Solubilidad Solida del Si →  $5 \times 10^{22} \, \text{cm}^{-3}$  $10^{20} \text{ a } 10^{21} \text{ cm}^{-3}$ 

Concentración de portadores generados por impurezas como función de la temperatura







Concentración de portadores

- Silicio con N<sub>D</sub> [atomos / cm³] de impurezas donadoras

## Concentración de electrones

$$n = (N_D + n_0) [atomos / cm^3]$$

N<sub>D</sub>: Generación por ionización de impurezas

n<sub>0</sub>: Generación intrínseca

$$N_D >> n_0$$

$$N_D \approx 10^{20} >> n_0 \approx 10^{10}$$

$$n = (N_D + n_0) \approx N_D [atomos / cm^3]$$

 $n \approx N_D$  [átomos / cm<sup>3</sup>]

## Concentración de huecos

$$p = p_0$$
 [átomos / cm<sup>3</sup>]

p<sub>o</sub>: Generación intrínseca

$$p \approx p_0$$
 [átomos / cm<sup>3</sup>]





En equilibrio termodinámico

$$n \times p = n_i^2$$

$$N_D \times p = n_i^2$$

$$p \approx \frac{n_i^2}{N_D}$$

Semiconductor con N<sub>D</sub> impurezas donadoras

 $n \approx N_D$ 

# Semiconductor tipo n



Semiconductor con N<sub>A</sub> impurezas aceptoras



Semiconductor tipo p



