APROXIMACION DE FUNCIONES

Gran parte de las aproximaciones hechas en Análisis Numérico consisten en aproximar una función g(x) por una combinación de funciones, partiendo de alguna clase de funciones conocidas.

Supongamos dada g(x) y $\{f_n(x), n = 0,1,...\}$:

$$g(x) \approx a_1 f_0(x) + a_1 f_1(x) + \dots + a_n f_n(x)$$

Existen distintos criterios para elegir las a_i dando lugar a distintos tipos de aproximación:

- Aproximaciones exactas o por interpolación
- Aproximaciones por mínimos cuadrados
- Aproximaciones de error mínimo-máximo

Interpolación

Supongamos tener un conjunto de puntos ya sean datos medidos o valores de una tabla, buscamos una función que pase por esos puntos y además acotar el error cometido. Trabajaremos con polinomios por ser estables.

Interpolación Polinomial

Supongamos que x_0 , x_1 , ..., x_n son n+1 puntos \in [a,b] y sea f(x): $[a,b] \to \Re$

Queremos construir un polinomio p(x), de grado \leq n que interpole a f(x) en esos puntos

$$p(x_i) = f(x_i)$$

si

$$p(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

tenemos un sistema de n+1 ecuaciones con n+1 incógnitas $\frac{Métodos Numéricos 2017}{3}$

Teorema de Existencia y Unicidad

Dados n+1 puntos distintos x_i i=0,...,n y n+1 ordenadas y_i existe y es único un polinomio interpolante $P^{(x)}$ de grado \leq n que interpola a los y_i en los puntos x_i

Polinomios de LAGRANGE

$$l_k(x) = \prod_{\substack{i=0\\i\neq k}}^{n} \frac{(x-x_i)}{(x_k-x_i)}$$

FORMA DE LAGRANGE

$$p(x) = \sum_{k=0}^{n} f(x_k) l_k(x)$$
Métodos Numéricos 2017

Familia de Funciones Bases

- Potencias : $1, x, x^2, x^3, ...$ son funciones base para polinomios
- Serie de Fourier: 1, $\sin(\omega t)$, $\cos(\omega t)$, $\sin(2\omega t)$,... se usan para funciones periodicas.
- Fns. Spline : actualmente son muy utilizadas para funciones no periodicas

Métodos Numéricos 2017

 $\begin{cases} a_0 + a_1 x_0 + a_2 x_0^2 + \dots + a_n x_0^n = f(x_0) \\ a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_n x_1^n = f(x_1) \\ \dots \\ a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_n x_n^n = f(x_n) \end{cases}$

En forma matricial:

$$\overrightarrow{X} \overrightarrow{a} = f(X) \xrightarrow{X}$$
: matriz de Vandermonde

Se llama Método de los Coeficientes Indeterminados

Teorema de aproximación de Weierstrass

Suponga que f está definida y es continua en [a, b]. Para cada $\mathcal{E}>0$ existe un polinomio p(x) definido en [a, b], con la propiedad de que

$$|f(x) - P(x)| < \varepsilon$$
, para toda x en $[a, b]$

EJEMPLO: Interpolar en x=2

х	f(x)
1	0
4	1.386294
6	1.791760

i) Usando
$$P_0$$
 y P_1 :
$$l_0(x) = \frac{x-4}{1-4} \qquad l_1(x) = \frac{x-1}{4-1}$$

$$p(x) = l_0 f(x_0) + l_1 f(x_1)$$

$$p(2) = \frac{2-4}{1-4} 0 + \frac{2-1}{4-1} 1.386294 = 0.4620981$$

ii) Usando
$$P_0$$
 , P_1 y P_2 :
$$p(x) = l_0 f(x_0) + l_1 f(x_1) + l_2 f(x_2)$$

$$p(2) = \frac{(2-4)(2-6)}{(1-4)(1-6)} \\ 0 + \frac{(2-1)(2-6)}{(4-1)(4-6)} \\ 1.386294 + \frac{(2-1)(2-4)}{(6-1)(6-4)} \\ 1.79176 = 0.565844$$

Métodos Numéricos 2017

ERROR DE INTERPOLACION

Teorema

Sea f(x): $[a,b] \rightarrow \Re$, n+1 veces diferenciable en (a,b), y sean $\{x_i\}$ i=0,1,...,n, n+1 puntos distintos en [a,b].

Si $p_n(x)$ es el polinomio de grado $\leq n$ que interpola a f(x) en, x_0,\ldots,x_n \therefore para cada $x\in [a,b]$ $\exists \ \xi\in (a,b)$ tal que:

$$f(x) - p_n(x) = \frac{(x - x_0)...(x - x_n)}{(n+1)!} f^{n+1}(\xi), \quad \xi \in (a,b)$$

Métodos Numéricos 2017

Método de LAGRANGE

- Evita resolver el sistema de ecuaciones (O(n3))
- Tiene un costo del orden de O(n2)
- Para estimar una cota del error se necesita conocer la derivada de orden n+1
- Si se agrega un punto, hay que recalcular todos los coeficientes

Métodos Numéricos 2017

FORMA DE NEWTON

La idea en este método es, dado $p_{n-1}\,$ poder calcular $p_n\,$ reusando lo anterior

$$p_n(x) = p_{n-1}(x) + C(x)$$
$$C(x) = p_n(x) - p_{n-1}(x)$$

C(x) debe ser de orden n, además

$$-\underbrace{\frac{p_n(x) = a_0 + a_1(x - x_0) + ... + a_{n-1}(x - x_0) ...(x - x_{n-2}) + a_n(x - x_0) ...(x - x_{n-1})}_{p_{n-1}(x) = a_0 + a_1(x - x_0) + ... + a_{n-1}(x - x_0) ...(x - x_{n-2})}$$

$$\underline{C(x) = a_n(x - x_0)(x - x_1) ...(x - x_{n-1})}$$

O sea que tiene los n ceros $x_0,...,x_{n-1}$ y como $p_n(x_n) = f(x_n)$

$$a_n = \frac{f(x_n) - p_{n-1}(x_n)}{(x_n - x_0) \dots (x_n - x_{n-1})} \underset{\text{Métodos Numérica}}{\longmapsto} f\left[X_0, X_1, X_2, \dots, X_n\right]$$
 n-ésima diferencia dividida de f

Forma de NEWTON

Con 1 punto $(x_0, f(x_0)) \rightarrow p_0(x) = a_0 = f(x_0)$ Con 2 puntos $(x_0, f(x_0))$ y $(x_1, f(x_1))$ $p_1(x) = a_0 + a_1(x - x_0)$ $p_1(x_1) = f(x_0) + a_1(x_1 - x_0) = f(x_1)$ $a_1 = \frac{f(x_1) - f(x_0)}{(x_1 - x_0)}$

$$\begin{aligned} a_1 &= \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} \\ p_1(x) &= f(x_0) + \frac{f(x_1) - f(x_0)}{(x_1 - x_0)} (x - x_0) \\ p_1(x) &= f(x_0) + f[x_0, x_1] (x - x_0) \end{aligned}$$

...

 $p_n(x) = p_{n-1}(x_1) + f\left[x_0, x_1, \dots, x_n\right](x - x_0)(x_1 - x_1) \dots (x_n - x_{n-1})$

Forma de Newton de Diferencias Divididas

Propiedades de las Diferencias Divididas

 i) Las diferencias divididas se pueden escribir recursivamente en función de diferencias divididas anteriores

$$\begin{split} f[x_i] &= f(x_i) \\ & \cdots \\ f[x_i, x_{i+1}] &= \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i} & i = 0, 1, \dots, n-1 \\ f[x_i, x_{i+1}, x_{i+2}, \dots, x_{i+k}] &= \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{x_{i+k} - x_i} \end{split}$$

ii) Si los z_i son un reordenamiento de los x_i

$$f\big[x_0,x_1,x_2,...,x_n\big] = f\big[z_1,z_0,z_2,...,z_n\big]$$

Métodos Numéricos 2017

11

Tabla de Diferencias Divididas

i	Xi	f(Xi)	Primera	Segunda	Tercera
0	X0	f(X0)			
1	X1	f(X1)	f[X0, X1]		
2	X2	f(X2)	f[X1, X2]	f[X0, X1, X2]	
3	хз	f(X3)	f[X2,X3]	f(X1, X2, X3]	f[X0, X1, X2, X3]

Métodos Numéricos 2017

12

Métodos Numéricos 26/10/2017

Error de interpolación al usar Newton

Sea $f(x):[a,b] \to \Re$ y sean $\{x_i\}i=0,1,...,n$, n+1 puntos distintos en [a,b]. Si $p_n(x)$ es el polinomio de grado < n que interpola a f(x) en $X_0,...,X_n$ entonces, el error que se comete en la interpolación viene dado por: $e_n = f(x) - p_n(x)$ La forma de $p_{n+1}(x)$ usando Newton :

$$p_{n+1}(x) = f(x_0) + f[x_0, x_1](x - x_0) + \dots + f[x_0, x_1, \dots, x_{n+1}](x - x_0) \dots (x - x_n)$$

Por ser interpolante : $p_{n+1}(x_{n+1}) = f(x_{n+1})$

O sea que:

 $f(x_{n+1}) = f(x_0) + \ldots + f[x_0, x_1, \ldots, x_n](x_{n+1} - x_0) \ldots (x_{n+1} - x_{n-1}) + f[x_0, x_1, \ldots, x_{n+1}](x_{n+1} - x_0) \ldots (x_{n+1} - x_n)$ Por lo tanto:

$$e_n = f(x_{n+1}) - p_n(x_{n+1}) = f[x_0, x_1, ..., x_{n+1}](x_{n+1} - x_0)...(x_{n+1} - x_n)$$
Métodos Numéricos 2017

Si comparamos con la fórmula de error vista antes:

$$f(x_{n+1}) - p_n(x_{n+1}) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x_{n+1} - x_0)(x_{n+1} - x_1) \cdots (x_{n+1} - x_n)$$

vemos que:

$$f[x_0, x_1, \dots, x_n, x_{n+1}] = \frac{f^{(n+1)}(\xi)}{(n+1)!} \quad \xi \in (a,b)$$

es decir que con un punto más podemos calcular el error

$$e_n = f[x_0, x_1, \dots, x_n, x_{n+1}](x - x_0)(x - x_1) \dots (x - x_n)$$

Regla del Término Siguiente

Observaciones:

- El polinomio de interpolación suele usarse para estimar valores de una función tabulada, en las abscisas que no aparecen en la tabla.
- El aumento de grado no siempre mejora la aproximación.
- · El polinomio es muy sensible a los errores de los datos
- · Tipos de error:

redondeo: datos, coeficientes, aproximación truncamiento: depende de la derivada

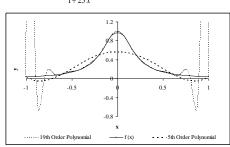
Métodos Numéricos 2017

15

17

Ejemplo: Función de Runge

$$f(x) = \frac{1}{1 + 25 \, r^2} \qquad \left[-1, 1 \, \right]$$



Métodos Numéricos 2017

14

Interpolación Polinómica Segmentaria

 $D \ a \ d \ o \ s \ n + 1 \ p \ u \ n \ to \ s \ (x \ _0, y \ _0) \ , \ (x \ _1, y \ _1) \ , \ ..., \ (x \ _n, y \ _n) \ c \ o \ n$ x₀< x₁... < x_n, una función spline de orden k (k-Spline) sobre dichos puntos es una función S verificando: (i) $S(x) = q_k(x)$ polinom io de grado $\leq k$, $x \in [x_k, x_{k+1}]$, k = 0, 1, ..., n - 1(ii) $S(x_k) = y_k, \quad k = 0, 1, ..., n$ (iii) $S \in C^{k-1}[x_0, x_1]$

Métodos Numéricos 2017

Aplicaciones

- Ingeniería y Diseño (CAD/CAM, CNC's)
- Geología
- Aeronáutica y automoción
- Procesamiento de señales e imágenes (Reconocimiento de patrones, recuperación de imágenes)
- Robótica
- Medicina (Aparatos auditivos, mapas cerebrales)
- Meteorología (Mapas climáticos, detección de inundaciones)
- etc.

Métodos Numéricos 2017

18

Métodos Numéricos 26/10/2017

Cubic Spline

Sea $f(x):[a,b] \rightarrow \Re$ y sean $\{x_i\}i=0,1,...,n$ n+1 puntos distintos en [a,b], a =x0 < x1 < x2 ... < xn = b

- a) En cada intervalo $[x_i, x_{i+1}]$, S es un polinomio cúbico denotado por $S_i(x)$.
- b) $S_i(x_i) = f(x_i)$, i = 0,..., n-2
- c) $S_{i+1}(x_{i+1}) = S_i(x_{i+1})$
- d) $S'_{i+1}(x_{i+1}) = S'_i(x_{i+1})$
- e) $S''_{i+1}(x_{i+1}) = S''_{i}(x_{i+1})$
- f) Se satisface alguna de las siguientes condiciones de frontera: $S''(x_0) = S''(x_n) = 0$ (frontera libre)

$$S'(x_0) = f'(x_0)$$
 y $S'(x_n) = f'(x_n)$ (frontera sujeta)

Métodos Numéricos 2017

Se plantea un sistema de ecuaciones para calcular los coeficientes del polinomio $S_{i}(x)$:

a)
$$S_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$
 $i = 0,1,...,n-1$

b)
$$S_i(x_i) = f(x_i) = a_i$$

si $h_i = x_{i+1} - x_i$ y utilizando las otras propiedades obtenemos:

$$h_{i-1}c_{i-1} + 2(h_{i+1} - h_i)c_i + h_i c_{i+1} = \frac{3}{h_i} \left[a_{i+1} - a_i \right] - \frac{6}{h_{i-1}} \left[a_i - a_{i-1} \right]$$

Métodos Numéricos 2017

Esta matriz es tridiagonal, diagonalmente dominante, o sea que siempre tiene solución y se resuelve con el método de Thomas

$$\left(\begin{array}{cccc} 2(h_1+h_0) & h_1 & \dots & 0 \\ h_1 & 2(h_2+h_1) & \ddots & \vdots \\ \vdots & \ddots & \ddots & h_{n-2} \\ 0 & \dots & h_{n-2} & 2(h_{n-1}+h_{n-2}) \end{array} \right)$$

Una vez calculados los ci:

$$b_i = \frac{1}{h_i} \left[a_{i+1} - a_i \right] - \frac{h_i}{3} \left[2c_i + c_{i+1} \right]$$

$$d_i = \frac{\left(c_{i+1} - c_i\right)}{3h_i}$$

Si el punto a interpolar está en el intervalo $(x_i \ , \ x_{i+1})$ se debe utilizar la func $\text{Mind}_j^{\text{los}} \text{Nim}_j^{\text{los}} \text{2017}$

Error de Interpolación

Al usar una spline natural para interpolar una función f(x), el error es proporcional a h^4 . Lo mismo ocurre cuando utilizamos una spline cúbica sujeta.

Métodos Numéricos 2017 22