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Abstract. A theory of impurity-related transient photoconductivity in semi-insulating semi- 
conductors is developed. When a photoconductor is illuminated in an applied electric field, 
the initial sweep-out of carriers generates space charge at the active centres within the crystal. 
This space charge is neutralised by injection from contacts, but the injected carriers are 
partially trapped leading to the possibility of current oscillation with frequency determined 
by a dielectric relaxation time and a trapping time. The theory of this effect is developed for a 
simple model involving a deep donor and compensating shallow acceptor. Effects of addi- 
tional traps on the transients are also discussed. If extra traps with large capture cross sections 
are present near the quasi-Fermi energy, they can damp the oscillations. Such traps can also 
strongly affect the transient shape, introducing dependence on optical chopping frequency 
and temperature. 

1. Introduction 

Deep levels are currently of considerable interest in semiconductor research and a 
number of experimental techniques are available for their study (Milnes 1973). Photo- 
conductivity is one technique which is particularly useful for optically active centres 
and a complete photoconductivity transient can contain a wealth of information which 
is not always easy to interpret. The technique has been reviewed in detail by Ryvkin 
(1964) who also discusses various analytical models for interpreting the shape of tran- 
sients. 

The literature on the theory of photoconductivity is extensive. It is necessary to set 
up rate equations for the relevant impurity levels, and the theory of Shockley and Reed 
(1952) is generally invoked. Analytical solutions of the resulting equations are not possible 
in general and many papers are devoted to analysing specific level schemes. In the present 
paper we are particularly concerned with counter-doped semiconductors of the type 
discussed by Migliorato et al (1977) and Elliott (1976). These systems can be typified 
by a deep donor and a compensating shallow acceptor. The shallow acceptor receives 
electrons from the donor, leaving the latter in a positive charge state which can be photo- 
neutralised. A simple analytical model for the time dependent photo-response of such a 
system was given by Migliorato et a1 (1977), and in the present paper we generalise this 
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theory to allow for additional trapping levels and space-charge effects. Space-charge 
effects can be important when the dielectric relaxation time of a sample is comparable 
with the response time, as occurs for example at very low temperatures with carrier 
freeze-out, or with excess deep donor, and to allow for this we have used the suggestion by 
Williams ( 1  969) that under uniform illumination carrier sweep-out is responsible for these 
effects. Our mathematical formulation of carrier sweep-out and the resulting response 
from the contacts leads to the prediction of a new mechanism for transient oscillations. 

In the small-signal case when the change in carrier concentration (AP) is much smaller 
than the dark carrier concentration (Po)  it is often possible to linearise the response 
equations and decouple the rate equations for the different levels. When AP > Po, 
however, a numerical solution is generally called for. An exception occurs when the quasi- 
Fermi level is distant from all levels except one optically active level and the trapping 
levels have sufficiently large capture cross sections to be effectively in equilibrium with 
the valence band. In the present paper we consider detailed analytical and numerical 
solutions for a model containing one optically active level (a deep donor) with fairly 
small capture cross section, a shallow compensating acceptor and a deep acceptor as 
a trap. The deep donor is considered to lie in the lower half of the band gap so that only 
p-type material is considered. 

For such a counter-doped system, the free carrier concentration at low temperatures 
can be very small. When the sample is illuminated under an applied electric field, the 
photogenerated carriers are swept out of the system if the transit time is fast compared 
with trapping times, but the contacts cannot restore charge neutrality in less than a 
dielectric relaxation time. The resulting space charge couples to the free carriers and can 
lead to interesting oscillatory phenomena. 

Many examples of current oscillation in photoconductors have been reported. If a 
condition of negative differential mobility is achieved, for example through a field- 
dependent capture cross section (Ridley 1963) or optic phonon emission (Maksym and 
Hearn 1979) then dipole domains tend to form which give current oscillations with a 
frequency determined by the transit time. Oscillations have also been observed which are 
not transit-time dependent. Moore et al(l967) observed oscillations with space-charge- 
limited currents coupled to traps, Kazarinov et a1 (1973) have discussed wave propagation 
of trapped space charge, and recently Arrington and Eisenman (1977) published transient 
photoconductivity data for doped silicon at liquid helium temperatures which show 
oscillatory behaviour similar to the effect described in this work. 

The theory is developed in stages. First the simple model of a deep donor and shallow 
acceptor is analysed assuming charge neutrality is maintained. In this case analytical 
solutions for the transients are possible for all values of AP/P, as long as the quasi-Fermi 
level is well above the shallow acceptor binding energy. This theory is adequate for the 
two-level system when the dark carrier concentration is sufficiently high for the dielectric 
relaxation time to be much shorter than the rise time. This theory is then generalised to 
analyse the current flow when space-charge neutrality is not maintained. In this case it is 
shown that the resulting non-linear differential equations have a focus in the phase plane 
describing damped oscillations. By linearising about the fixed point it is found that the 
period of oscillation equals the square root of the product of a dielectric relaxation time 
and a trapping time. The decay time is given by the dielectric relaxation time for the 
steady-state free carrier concentration. Effects of further trapping levels are then con- 
sidered and shown to increase the damping of the oscillations and produce interesting 
effects on the shape of transients. These various effects are illustrated with computer 
graphs. 
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2. An analytical model with space-charge neutrality 

In this section the transient response is analysed for a two-level system consisting of a 
deep donor and compensating shallow acceptor. The ratio of optical to capture cross 
sections is assumed to be much higher for the deep donor. The shallow acceptor, due to 
its long-range hole-attractive ionisation state, is assumed to have a high hole capture 
cross section so that it can be considered to maintain equilibrium with the valence band. 
For simplicity we assume Shockley and Read (1952) kinetics when the rate equation for 
the population of a level can be written in the form 

(d/dt)(f-)= Uf '  - C [ f - P  -f+P,]. (1) 

Here f -  is the probability that a level is occupied by an electron, f + = 1 - f -, C is 
the hole capture cross section (including the mean thermal velocity of free holes), P is 
the concentration of free holes, P, is the concentration of free holes obtained if the Fermi 
level lies at the impurity energy, and U f  + denotes the optical transition rate. In the 
steady state (d/dt)( f -) = 0 and equation (1) yields the population probability in the form 

U E = -  
C 

E + P, 
- e  = E + Pe + P,' 

where a superscript e denotes steady-state values. For simplicity, degeneracy factors are 
not included explicitly, but if required they can be included by replacing P, by gP,, 
where g is the normal degeneracy factor (Milnes 1973). 

To solve equation (1) it is necessary to obtain an expression for P, using charge 
neutrality. If we use subscripts a and d to denote the shallow acceptor and deep donor 
respectively, then the charge neutrality condition takes the form 

P = N , f ,  - N,f:  (3) 
where N denotes an impurity concentration. Using (3) with equations (1) and (2) it is 
clear that in general the rate equations for different levels are coupled, and analytical 
solutions are not possible. If we assume that for the shallow acceptor 

pa % Ea, 'a 4 'd, 
then the population of the shallow level can be approximated to 

(4) 

fa- 1: PalV + Pa). ( 5 )  

If we further assume that the quasi-Fermi level describing the instantaneous free hole 
population, is always well above the shallow acceptor energy, then (5) simplifies to 

fa- 1: 1 - PIP,, Pa 4 P (6) 
and the charge neutrality condition (3) reduces to 

P = ma - N,f,', = N/(1 + N,/Pa). (7) 

(d/dt)(f,) = -@(fJ2 + + Y (8) 

a = c,m,, p = --(Ud + C,P,) + C,(N, - ma), 

The rate equation for the deep donor can now be written in the form 

Y = ('d + 'dPd)' 

Equation (8) is a standard integral and the final solution for f; and P takes the form 
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(9) 
where x, y are the positive and negative stationary solutions of (8), 

x = f;(4 y = [ p  - ( p z  + 4ay)1’2]/2a. 

Substitution of (9) in (7) yields the time-dependent free hole concentration. It should be 
noted that (9) is similar in form to the approximate solution obtained by Migliorato 
et a1 (1977). 

The solution (9) does not have a simple exponential dependence on time. However, 
all the time dependence is contained in the exponential form exp[ - a(x - y)t] so that 
we can define a rise time z by the expression 

(10) 

(11) 

If Nd $ Na or vice versa, then the last term in (11) is negligible and the rise time reduces to 

(12) 

l/t = a(x - y) = (pz + 4ay)”Z. 

After substituting for a, p, y ,  from (8) this reduces to the form 
- -  

( l / ~ ) ~  = [ U ,  + C,(P, + N, + - Ci4N,Na. 

l /z  = U ,  + C,[P, + N,.], 
where N: is the impurity concentration of highest value. It is interesting to note that for 
exact compensation Na = N, and C,P, 4 U ,  4 C,(m, + ma), equation (11) yields a 
square-root dependence on light intensity 

l /z  -+ [Cd2(N, + Na)]””y. 

(1/2)2 N U ;  + c;(ma - W,)Z + 2UC,(Na + N,). 

(13) 

(14) 
This shows that for high optical excitation 1/z cc U ,  and as the light intensity falls the 
time constant becomes longer tending towards the constant value l /z  N C,/N, - ma(. 

For a deep donor, P ,  can be neglected in (1 1) when 

For large times equation (9) has the form 

f ;(t) -+ A - B exp( - t / z )  t $ z  (15) 

so that the time constant can be obtained from the expressions 

If equation (16) is used to define an ‘instantaneous’ time constant z ( t )  for the transient (9) 
we obtain 

As t -+ m, z ( t )  + z and as t -+ 0, (l/z(t)) ---f (l/z) [ I  + S/(1 - S)]. Using equation (10) to 
express y in terms of x, the expression for S can be simplified to the form 
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and the initial time constant simplifies to the form 

For the rise transient Af; > 0 and z(0) > 5.  If z is approximated by (12), l / z  N C,m;, 
using the expression for r in (8) it follows that az N Ed ’ X ;  5 1 for low optical generation 
rates. For excess deep donor, this becomes az - 1 and the variation of time constant 
depends on the change in the population factor for the deep donor. 

If the large-time value of l/z(t) is observed to be linear in the light intensity and the 
system is not closely compensated so that equation (12) is valid, then the rise and decay 
time constant for large time yield the values of U ,  and C,N;. The zero time values of 
z( t )  then give a value for aAf,. If the initial and final values of hole concentration P are 
also measured, then using equations (2) and (3) we obtain five equations for the unknowns 
U,, Na, N,, C, so that in principle all the unknowns are determined and a consistency 
condition is also obtained. A further consistency condition is given by the complete time 
dependence of z ( t )  (17). A more accurate analysis could use the complete expression (11) 
for z as this does not involve any additional unknowns. 

l/z(O) = ( l /~)[ l  - a~Af,] .  (19) 

3. Space-charge effects 

The model of 52 assumed space-charge neutrality which is only justified when the 
dielectric relaxation time zD is much shorter than the transient time constant z. For 
materials at very low temperatures or with the counter-doped material of particular 
interest in this work having excess deep donor, it is possible to have conditions where 
zD 2 z and space-charge effects can then alter the photoconductivity transient (Williams 
1969). 

We consider a typical experiment where a photoconductor biased with a constant 
voltage is subjected to a square wave pulse of radiation and the current monitored. 
The light creates free carriers in a space-charge neutral state so that it might be expected 
that the virtual cathode of an ohmic contact would respond instantaneously to replace 
photoexcited carriers that are swept from the samples by the electric field. This reasoning 
becomes correct as the constant applied voltage tends to zero but for stronger fields the 
photoexcited carriers can be swept away as they are created so that the increment in 
carrier density near the injecting contact due to optical generation is negligible. In this 
case the band bending near the contact due to continuity with the position of the Fermi 
level in the bulk is unaffected and the contact can only respond to the space-charge- 
induced local electric field (Lampert and Rose 1959). As the photoexcited carriers are 
swept from the sample, immobile space charge is created at the optically active impurity 
centres. This space charge alters the electric fields at the contacts increasing the field at 
the injecting contact and reducing the field linearly across the sample consistently with 
the constant applied voltage, so that more carriers are injected than extracted, giving a 
driving force to restore space-charge neutrality. As the carrier density builds up in the 
crystal. the band bending at the ohmic contact is further adjusted to maintain the electric 
current. The observed transient results from competition between the radiation field 
generating space charge and the contacts responding to neutralise the sample. 

To estimate the increment in carrier density ( 6 p )  due to the photogeneration sweep- 
out current we can solve the continuity equation 

a(6p)lat  + d(6j)/ax = is 
6j  = 6ppE,,  i7 = UdNdjd’ 
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where p is mobility, E ,  is applied electric field and 6 p  the increment in free carrier density 
due to photogeneration (with zero incremental response from the contact). At the steady 
state the solution to (20) takes the form 

6P = (U/PE,)X O < x < L  (21) 

so that if (UfIpEJL 4 Po,  where P, is the dark carrier concentration we can neglect 
this increment in carrier density and assume that the contact only responds to the local 
electric field. 

As a further approximation we assume that the photoexcited carriers are swept 
from the sample with negligible trapping. This assumption should be reasonable when 
the carrier transit time is short compared with the transient time constant z. It is true 
that capture at the shallow acceptor, having large capture cross section may be signi- 
ficant, but we assume that this can be allowed for with the trapping factor introduced 
in equation (7), and neglect any non-uniformity of space charge. Under the condition 
that 6 p  is negligible (21), trapping on the shallow acceptors is predominantly from the 
uniform carrier concentration flowing from the injecting contact so that this does not 
generate non-uniform space charge. 

To obtain insight into the small-time response we initially ignore capture at the 
optically active deep donor, then the space charge generated is U t  - ( P  - Po)  where Po 
is the dark hole concentration. Capture at the shallow acceptor can be allowed for by 
increasing (P  - Po) by the factor (1 + Na/Pa). The total particle current i can be written 
in the form 

j ( x )  = j , ( x )  + u x ,  j i b )  = PPE(X) (22) 

where we assume that the contact can adjust rapidly to the local electric field on the 
timescale of the transient under conditions of constant applied voltage. The continuity 
equation takes the form 

ap a 
- + - j ( x )  = U,  
at ax 

and solving Poisson's equation for the electric field yields 

E(x)  = E,  - [ U t  - ( P  - P,)](x - L / 2 ) 4 n q / ~ ,  (24) 

where E ,  is the constant field arising from the applied voltage, L is the sample length, 
E is the dielectric constant, q is the electron charge and we have assumed that P is inde- 
pendent of x and neglected the time dependence of U .  Substituting E(x)  in (23) yields 

a a 4nq - 
at ax E 

- - p P - j i =  - p P - [ U t - ( P -  Po)]. 

The solution for P(t) can now be obtained in the form 

where we have introduced a dielectric relaxation time 

117; = 4nqpPo/€. (27) 

As U -+ 0, P(t) -+ Po as required, and asymptotically as t -+ CO, P(t) -+ Ut .  This large- 
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time divergence arises, of course, because we have neglected hole capture at the deep 
donor. Equation (26) does, however, give a useful solution for small times. The initial 
response has the form 

Po exp( Ut2/2P,z3 
1 - ( U / P o )  It + zE[exp( - t / z t )  - 11 - t 2 / 2 2 i }  

P(t) = 

t2 e 2P,z;/U. 

Consequently (d/&)P(t)l,=, = 0 and there is no appreciable response for t < T: under the 
condition Ut e 2P0. This indicates that at small times the transient is delayed followed 
by a fast rise. To obtain the complete transient it is necessary to allow for capture at 
the deep donor. The optical generation rate becomes 

(d/dt)fd- = Uf,' - Cd(fd-P -f:Pd). 

Q = (Nafa- - N d f :  - P)q, 

j / q  = @E + Nd[d/dt)f[]x 

(29) 

The negative space charge Q takes the form 

f,- = Pa& + Pa) (30) 

and the total particle current becomes 

(31) 

E(x) = E, - ( 4 n q / ~ ) Q ( x  - L/2). 

Using the continuity equation in the form 

- aQ/at + aj/ax = o (32) 

we obtain the rate equation for the free carrier density 

Equations (33) and (29) give two coupled non-linear differential equations for P(t) 
andfd-(t) which must be solved numerically. From the expression for the electric field (31) 
it follows that (a/dt)E(x, t )  = 0 for x = L/2 and the displacement current vanishes at 
this point. Consequently the total current measured in the external circuit J ( t )  can be 
written as 

J(t)/q = ,@Eo f Nd(L/2)[(d/dt)&-]. (34) 

and in the numerical calculations it is convenient to calculate an effective free carrier 
concentration (p) 

I? = J(t)/(qPEo). (35) 
To derive equation (33) we have taken dP/dx = 0. The resulting solution is consistent 

with this condition but depends on the approximations and assumptions for its validity. 
It is possible to check the stability of this uniform solution against small perturbations 
in P(t) andf;(t) of the form exp[i(kx - ut)] when it is found that such perturbations 
decay as exp( - y t )  where 

(36) y = U + C P  + ( ~ T c ~ / L / E ) ( P  - Q) 

Q = negative space charge. 

K26 
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This stability analysis is very similar to the analysis of Kazarinov et al(1973) and shows 
that damped propagating space-charge waves are possible. In the present analysis, 
however, we have the additional feature of optical generation of space charge and the 
expression for the decay constant indicates that if the total negative space-charge 
density generated in the crystal exceeds the free carrier concentration obtained from 
the uniform solution, then the latter may become unstable. This instability would 
probably appear as noisy oscillation. By considering the analytical solution (26) it is 
easy to prove that for weak optical excitation such that 07: < Po, the decay constant 
is always positive. As the analytical model neglects hole capture, it overestimates the 
space charge generated so that this condition gives a lower bound to the critical optical 
generation rate for stability. 

Apart from stability considerations, the main assumptions leading to (33) can be 
listed as follows : 

(i) uniform initial carrier concentration ; 
(ii) photogenerated carriers are swept from the sample without trapping so that 

the generated space charge is uniform in space; 
(iii) crystal homogeneity; 
(iv) the diffusion current at the virtual cathode contact responds instantaneously 

to the space-charge-induced electric field in an Ohm's law manner. 
It is difficult to give a rigorous justification for the contact boundary condition 

without a very complicated numerical analysis. Williams (1969), used a simple version 
of the theory developed in this paper and gave strong experimental evidence for the 
carrier sweep-out origin of dielectric relaxation effects in transient photoconductivity, 
so that when dielectric relaxation effects are present, we would expect the oscillations 
to be observable, though details may depend on the contact boundary conditions. The 
optically generated space charge acts to forward-bias the injecting contact, and calcula- 
tions by Many and Rakavy (1962) show that the response of an ohmic contact to a 
voltage pulse under space-charge-limited current conditions can give a current surge 
due to injected space charge. One may speculate that with low impurity capture cross 
sections, the contacts could have a super-linear transient response, neutralising the 
optically generated space charge and damping the oscillations. If we assume fast capture 
at the shallow acceptor, however, then the fraction of the free carrier increase which is 
trapped can be obtained from (2) as N,P,/(P, + P)'. If N,/P, b 1, then most of the 
transient space charge from the contact will be trapped and the free carrier dynamics 
should behave as though the contact were in the steady state. If this condition does not 
hold or if the other assumptions break down and the system becomes spatially non- 
uniform, then it becomes necessary to solve non-linear partial differential equations in 
both space and time variables, including diffusion. This situation would increase the 
computational problem enormously and is not explored in the present paper. 

4. Transient oscillations 

A well known technique for studying non-linear differential equations of the type shown 
in (29), (33), consists in eliminating the time variable and considering the resulting integral 
curves (see for example Stoker 1950). The nature of the singular points then determines 
the character of the solution. In this section we show that under certain conditions the 
equations for transient response exhibit a focus in the phase plane giving the possibility 
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of damped oscillation. Using a theorem due to Poincare, the nature of the singular 
point can be determined by linearising the equations about the steady state. 

If we denote the steady-state expressions with a superscript e, and also consider the 
situation of excess deep donor where the quasi-Fermi level is much higher than the 
shallow acceptor level (Pa % P), the equation (33) can be approximated to 

P = Pe + P,, f ,  =f;- +&, 
where P ,  and fd; denote deviations from the steady-state values, 24, is the dielectric 
relaxation time corresponding to the steady-state free carrier population and we have 
linearised in P,. Similarly equation (29) yields 

(38) (d/dt)f, = - [U + C,(P” + Pd)]f, - Cd f ; - P , .  

We can write these linear forms in the standard notation (Stoker 1950) as follows: 

d 
dt d l  
- f - =  ‘fd; + dP1 

d 
- P ,  = af’+ bP, 
dt 

where 

(39) 

(39) shows that the deep donor population and the carrier concentration are coupled, 
and by considering solutions of the form exp(At) we are led to the usual secular determinant 
with characteristic equation 

A’ - A(b + C) - (ad - bc) = 0 (41) 

having solutions 
2A = (b + C) -t. [(b - c)’ + 4adI”’ 

a, b, c and d are real quantities so the condition for stable damped oscillation becomes 

(b - c)’ + 4ad < 0, (b  + c) < 0. (43) 

From (40) the stability condition is clearly satisfied and ad < 0 so that oscillatory 
solutions must be considered. The condition (43) takes the form 

4[~4,2~(1 + Na/Pa)]-l > [U + Cd(Pe + Pd) - 1/2;I2 (44) 

l/zc = CdNdf:-. (45) 

here we have introduced a capture time for the deep donor 

To determine relative magnitudes it is necessary to insert numbers, and typical values 
in CGS units are Cd - 
(assuming p - 2000). Consequently at zero light intensity, the right-hand side of (44) 
can typically be approximated to (l/@ and the condition for oscillation reduces to 

(for a capture cross section - lo-’’ cm’), 1/P‘z;, - 
4/[2$ + Na/Pa,I > w;. (46) 

For a sufficiently shallow acceptor Na/Pa < 10 and this condition is easily satisfied in 
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semi-insulating material at low optical excitation where 7; can be large. If we neglect 
N,/P, and assume oc e 7; then the oscillation frequency CO and damping K becomes 

(47) e -1/2 
CO (7,Q 

K - $(l/z; + U + C,P”). 

Consequently the oscillations have a damping time typically less than or of the order of 
the dielectric relaxation time. 

It should be noted that these oscillatory solutions are not expected to be observed 
in the presence of strong fast trapping. The model has only considered a deep donor 

C 
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Time l m s )  

Figure 1. Computer calculation of transient current oscillations. This calculation was for 
silicon doped with 5 x 1015 cm-3 boron and 5.4 x l oLs  cm-3 deep donor with energy at 
340 meV above the valence band and a capture cross section of IO-’’ cm2. The temperature 
is 80K and a background photon flux was assumed to set the ‘dark’ hole concentration at 
2.7 x lo3  cm113. Symbols +, x ,  0 are used to denote the transient obtained after 0, 1 , 2  turns 
of the optical chopper respectively. The chopped light was taken to be a square wave of 
length lO-’s. 

and shallow acceptor for which N,/P, 5 10. If this latter condition breaks down, or 
additional fast trapping levels are present, the condition for oscillation may not be 
satisfied. Under the condition P, 4 P’ a simple estimate shows that the factor (1 + N,/P,) 
in (46) is replaced by 

( 1  + N,P,/Pe2) P, 4 P‘. (48) 

If the trapping level is close to the quasi-Fermi level and say P, - &Pe for the derivation 
of (48) to hold, then N,P, /P2 can be a large number making oscillatory solutions less 
favourable. 
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The formulae for frequency and damping are only valid for small-amplitude oscilla- 
tions, and to treat the large-amplitude case it is necessary to solve the full non-linear 
equations numerically. In figure 1 we show a computer solution for the transient under 
ideal conditions. In a practical experiment crystal inhomogeneities will lead to a spread 
of frequency (o cc (Ndf;-)lI2) and if two optically active levels are involved the charac- 
teristic equation (41) will be replaced by a cubic so that more than one sharp frequency 
may be superimposed. In an experiment at low temperature, the position of the quasi- 
Fermi level can be very sensitive to light and temperature, and by using different constant 
background fluxes and varying the temperature the quasi-Fermi level could have a 
range of positions relative to the valence band with zD 2 z. In this way it may be possible 
to position the quasi-Fermi level well away from any trapping regions and use a second 
beam to excite oscillations. Under conditions where the transit time is much shorter than 
the transient time constant z, the theory of the transient is fairly simple for small signal 
conditions, and using two beams as described to measure the transient for different 
positions of the quasi-Fermi level with or without space-charge effects, may provide a 
useful new technique for the study of imperfections in photoconductors. 

5. Additional levels and numerical solutions 

With arbitrary additional levels it is necessary to write a rate equation (1) for each level, 
and use charge neutrality to determine P if space-charge effects are negligible. Under 
large signal conditions (AP g Po) all the levels are coupled and a numerical solution is 
necessary. Under small signal conditions (AP 4 Po) it is possible to linearise the charge- 
neutrality condition in AP when the steady-state response can be written quite generally as 

)] (49) 
NiPoEi N i p i  + E i )  

(Po + Pi + Ei)(P0 + Pi) )/fl + ?( (Po  + Pi + Ei)’ 
AP = 

where the index i refers to impurity species, Po is the dark hole concentration, Ei = U,&,, 
N i  is the concentration of impurity i and Pi is the free hole concentration when the 
Fermi level is at the energy level of impurity i. Similarly, the rate equation (1) can be 
linearised in AP and Af - 

(d/dt)(Af-) U( l  -f-) - C [ f - A P  + PoAf- + PtAf-]. (50) 

Iff- A P  4 PAf -, then in the absence of space-charge effects the solution has the simple 
exponential form 

(51) 

In this case the levels become decoupled and the transients are superpositions of simple 
exponentials. 

In the general case there is no alternative to a numerical solution and in this section 
we discuss the simplest case of the model of & 2  and 3 with one extra level which is 
assumed to have a large capture cross section so that it can be considered in quasi- 
equilibrium with the valence band on the timescale of the transient. In this case its electron 
population has the form f , -  = P,,’(P + P,) and gives a correction to the charge-neutrality 
condition (3). If P, % P, i.e. the quasi-Fermi level is well above the trap energy, then the 
charge-neutrality condition simplifies to the form 

Af-  = A - B exp( - t / z )  

l /z  = C(E + Po + P,). 
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and the extra level can be included in the analytical solution of $ 2  as a constant trapping 
factor. 

In the other limit when P % Pt and the trap energy is well above the quasi-Fermi 
level, f; N PJP, the charge-neutrality condition becomes 

P = ma - m,f; + ;ir* P,/P 

2P = (ma - m,f;) + [(ma - N,fJ2 + 4 m , P , y 2  (53)  

If N,P, & P2 this simplifies to the form 

P 2: ;(ma - R,f,+) + (W,P,)l/* (54) 
and the solution of $ 2  again applies with Nd -+ im, and ma .+ ;ma + (NlPl)1'2. If 
NtPt < P,  then the level can simply be neglected. 

The difficult region for solution is RtP ,  N P2, P, 5 P, when the solution must be 
intermediate between the two simplified forms considered above and a detailed numerical 
solution is required. Physically one can think of the extra trap as introducing p-dependent 
trapping factors. From the solution for the transient time constant (12) it is clear that 
strong trapping reduces the value of R; and therefore increases z, slowing down the 
transient. This implies that in a temperature range where the position of the quasi-Fermi 
level is sensitive to temperature, this type of trapping can introduce a strong temperature 
dependence for the transient time constant. 

A particularly interesting case arises when the quasi-Fermi level sweeps through 
the trap energy during the course of the transient. In this case computer solutions can 
show strong differences between the transient shape obtained from a single shot experi- 
ment and from a repeated experiment where complete equilibrium is not achieved 
between cycles, such as might occur if an optical chopper were used. If the slowing down 
effect due to trapping is greater than or comparable with the chop time, then the observed 
transient is obtained from initial trap populations which are disturbed from the dark 
values. Some of these effects are illustrated in figure 2. The single shot transient shows 
an initial delay related to space-charge effects and trapping which after one turn of 
the chopper switches to a different shape. At 80 K the initial and final values of the quasi- 
Fermi level for the single shot transient were 209 meV and 155 meV so that the trap at 
180 meV is swept through. At 90 K the single shot Fermi level positions were 237 meV 
and 176 meV. In this case the trap at 180 meV is close to the final position of the Fermi 
level and has the effect of slowing the transient. At higher temperatures the final position 
of the Fermi level moves further into the gap and the transient becomes faster again as 
the trapping effect is reduced. The single shot transient at 90 K has a knee. The fast rise 
below the knee is related to space-charge effects and the sharp slowing of the transient 
is related to the quasi-Fermi level approaching a fast trapping level. If the trap concentra- 
tion is increased, the slowing effect near the knee becomes more pronounced. Further 
calculations with and without space-charge effects showed that fast trapping as the 
quasi-Fermi level approaches a trap slows the transient and depending on the trap 
concentration and whether the quasi-Fermi level sweeps through the trap level, can 
produce a variety of odd shapes for the transients. It should be noted that S-shaped 
transients have previously been recognised as due to trapping (Ryvkin 1964). 
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Figure 2. Computer calculation of transients with a fast trap: (a) rise transient; (b) fall transient. 
This calculation assumed Na = 5 x lo'' cmW3, N ,  = 6 x 1015 ~ m - ~ ,  N ,  = 10" ~ m - ~ .  
The capture cross section for the deep donor is lo-'' cm2 and the additional trap was taken 
to be in equilibrium with the valence band. The deep donor and trap energies were 340 meV 
and 180 meV respectively. Symbols +, x refer to 0 and 1 turn of the chopper at temperature 
80 K. 0 , O  refer to 0 and 1 turn of the chopper at 90 K. A background flux was assumed to set 
the 'dark' hole concentration at 1.2 x lo' cmF3. The on and off times for the chopper 
light are both lo-* s. 
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It would be futile to present computer solutions for all the cases that have been 
examined theoretically and the value of the technique as an analytical tool must be 
demonstrated by analysis of experimental data. The method is currently being used to 
study transients obtained by E Maher and R Humphreys (private communication) for 
silicon doped with boron and platinum. This system appears to be very complex and the 
analysis has not yet been completed, though certain features, for example the temperature 
effects in figure 2, have been observed. Due to the sensitivity of transients to trapping 
levels close to the quasi-Fermi level it seems that two-beam experiments where one beam 
is used to position the quasi-Fermi level and the second beam is used to excite the photo- 
conductivity transient could be a powerful tool for studying impurity levels in semi- 
conductors. When the quasi-Fermi level is well away from trapping levels, the model of 
4 2 applies with modified concentration due to trapping factors, and as the quasi-Fermi 
level is positioned close to a trapping level, characteristic slowing effects should be 
observed as the magnitude of the trapping factor changes. 

6. Conclusion 

A theory of transient photoconductivity has been developed for semi-insulating materials. 
The prediction of photocurrent oscillations is of particular scientific interest as an 
example of a non-linear vibration. The physical mechanism for these oscillations is 
readily understood in terms of carrier sweep-out. The optical flux initially creates trapped 
space charge in the crystal faster than it can be neutralised by the contacts. When the 
contacts have injected sufficient free carrier to neutralise this space charge, the ionised 
deep level concentration is higher than the steady-state value and the trapping rate 
exceeds the photogeneration rate so that the photocurrent decreases. This mechanism 
continues until space-charge neutrality is achieved with the steady-state free carrier 
density. In the example considered here the oscillations are damped due to the decay 
of photogenerated space charge. For future work it would be interesting to study this 
type of oscillation in situations where space charge is maintained, for example, in high 
electric fields with space-charge-limited currents. In fairly simple situations with only 
a few active trapping levels, the analysis of photoconductivity transients developed in 
this work could provide a useful tool for studying deep levels. 

Counter-doped material contains distributions of positively and negatively charged 
impurities so that it might be thought that band tailing would have a large effect. This 
possibility has been examined using the model developed by Herbert et al (1975). It 
was found that with a random charge distribution a large band tail was produced, but 
when the ionisation state of the impurities was allowed to respond to the large-scale 
potential fluctuations this band tail was reduced to less than or of the order of kT, 
having negligible effect. This can be understood when it is noticed that except for very 
close compensation, the Fermi level will be close to the energy of the dominant impurity 
species. In the presence of a potential fluctuation, the impurity energy moves with the 
band edges but the Fermi level remains fixed. Consequently the charge state of the 
dominant impurity adjusts to screen out the fluctuation. This argument breaks down 
for very close compensation and in this case large band tails are obtained, but some 
mechanism of auto-compensation is required to produce such a doping configuration. 

If impurity clustering is present (Voronkov et a1 1979), this could yield a large band 
tail effect and consequent smearing of the theoretical transient. For samples where in 
the absence of clustering the transient is well understood, measurements of transient 
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response in conjunction with annealing experiments could provide an effective way of 
studying cluster formation. 
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