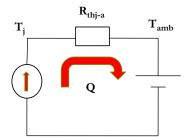


Modelo Térmico


- La potencia generada $P = V_F I = V_D I + I^2 Rs$ origina el calor el cual debe ser removido desde la juntura hasta el exterior
- Recordemos que el calor se puede remover de tres formas:
- Conducción
- Convección y
- Radiación

Modelo Térmico

- <u>Conducción</u>: el calor se transmite por el choque de los electrones contra la estructura cristalina y la agitación térmica de los átomos alrededor de su posición de equilibrio
- <u>Convección:</u> el calor se renueva por el movimiento de la masa de aire que rodea debido a que disminuye la densidad precisamente por que se calienta y se expande.
- Radiación: el calor fluye como onda electromagnética, en forma de brillo anaranjado de quemador o pantalla de las estufas. Esta radiación es proporcional a T4 (ley de Stefan)

Modelo Térmico

 Por lo expuesto se puede hacer una analogía con los circuitos eléctricos

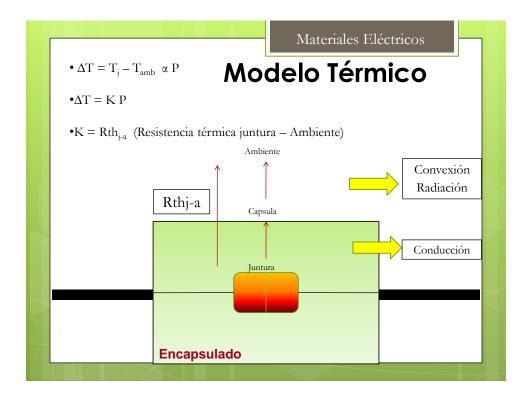
Q es el flujo de calor en W

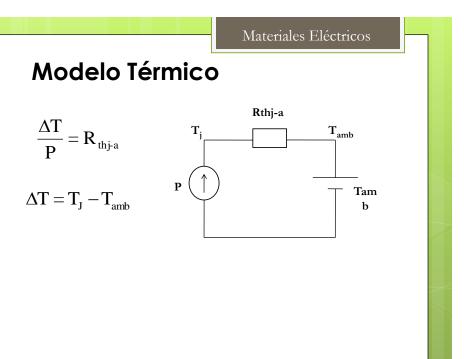
T es la temperatura en °C

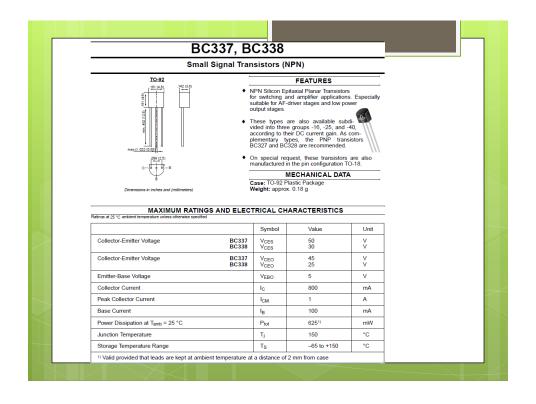
R_{thj-a} es la resistencia térmica

Materiales Eléctricos

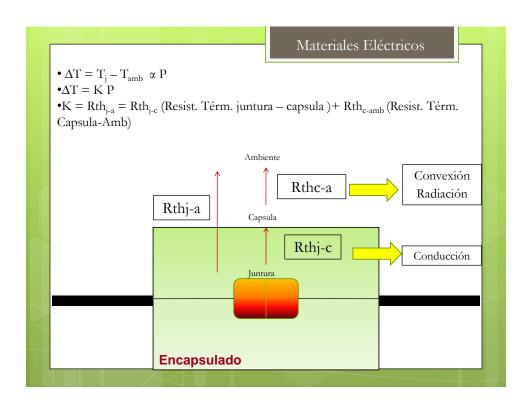
LEY DE OHM TÉRMICA:

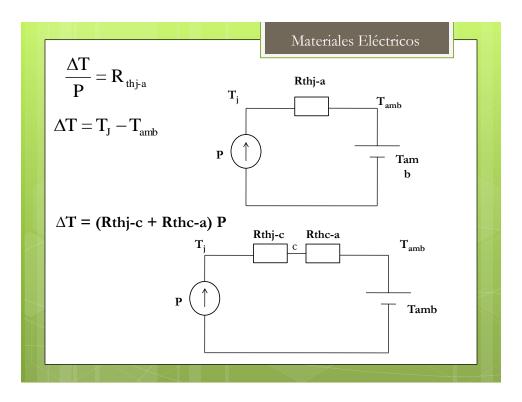

Haciendo una analogía con los circuitos eléctricos, se puede definir una


Ley de Ohm para el flujo de calor.


Los componentes térmicos de estos circuitos equivalentes a sus análogos eléctricos son:

- •La fuente de corriente es equivalente a la fuente generadora de potencia en forma de calor que se desea evacuar.
- La diferencia de tensión eléctrica es equivalente a la diferencia de temperatura.
- •La resistencia eléctrica es equivalente a la resistencia térmica medida en °C/W (grados centígrados por vatio).


Con estos elementos podemos ya formular la Ley de Ohm térmica:



	337, E				
Ratings at 25 °C ambient temperature unless otherwise specified	ICAL CHAR	ACTERIS	TICS		
	T	T		1	1
	Symbol	Min.	Тур.	Max.	Unit
DC Current Gain at V_{CE} = 1 V, I_{C} = 100 mA	hFE hFE hFE	100 160 250 60 100	160 250 400 130 200	250 400 630	= =
-25 -40	h _{FE}	170	320	_	=
	ICES ICES ICES ICES	-	2 2 - -	100 100 10 10	nA nA μA μA
Collector-Emitter Breakdown Voltage at I _C = 10 mA BC338 BC337	V _{(BR)CEO} V _{(BR)CEO}	20 45	=	=	V
Collector-Emitter Breakdown Voltage at I _C = 0.1 mA BC338 BC337	V _{(BR)CES} V _{(BR)CES}	30 50	=	_	V
Emitter-Base Breakdown Voltage at I _E = 0.1 mA	V _{(BR)EBO}	5	-		V
Collector Saturation Voltage at I _C = 500 mA, I _B = 50 mA	V _{CEsat}		-	0.7	V
Base-Emitter Voltage at V _{CE} = 1 V, I _C = 300 mA	V _{BE}	-	-	1.2	V
Gain-Bandwidth Product at V _{CE} = 5 V, I _C = 10 mA, f = 50 MHz	f _T	-	100	-	MHz
Collector-Base Capacitance at V _{CB} = 10 V, f = 1 MHz	ССВО	-	12	-	pF
Thermal Resistance Junction to Ambient Air	R _{thJA}	-	-	2001)	K/W

Complementary Silicon Power Transistors

. . . designed for general-purpose switching and amplifier applications.

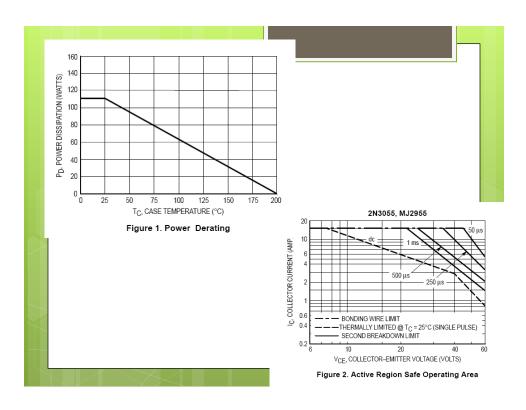
- DC Current Gain hpp = 20 70 @ I_C = 4 Adc
 Collector Emitter Saturation Voltage —
 VCE(sat) = 1.1 Vdc (Max) @ I_C = 4 Adc
 Excellent Safe Operating Area

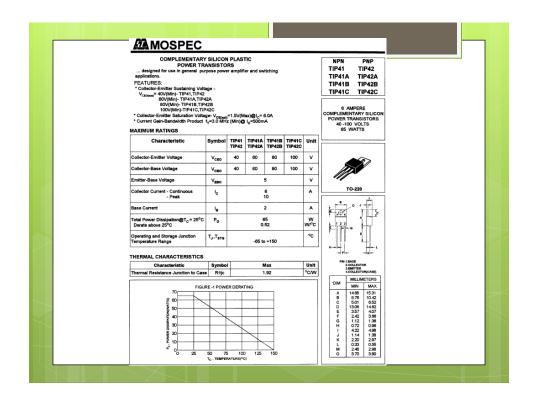
MAXIMUM RATINGS

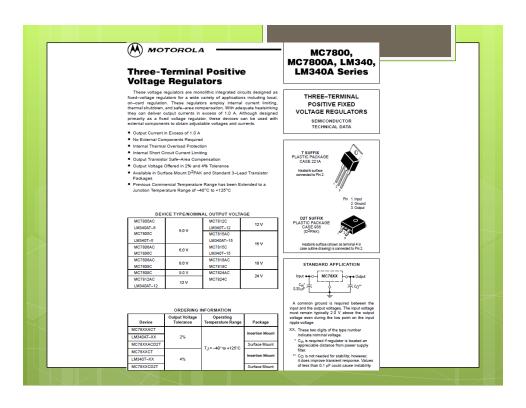
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	60	Vdc
Collector-Emitter Voltage	VCER	70	Vdc
Collector-Base Voltage	Vсв	100	Vdc
Emitter-Base Voltage	VEB	7	Vdc
Collector Current — Continuous	Ŀ	15	Adc
Base Current	ΙΒ	7	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	115 0.657	Watts W/° C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

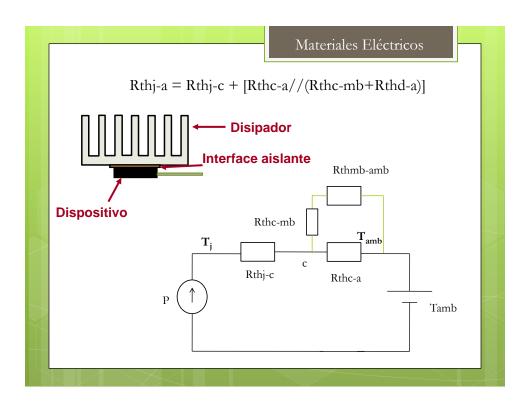
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{BJC}	1.52	°C/W

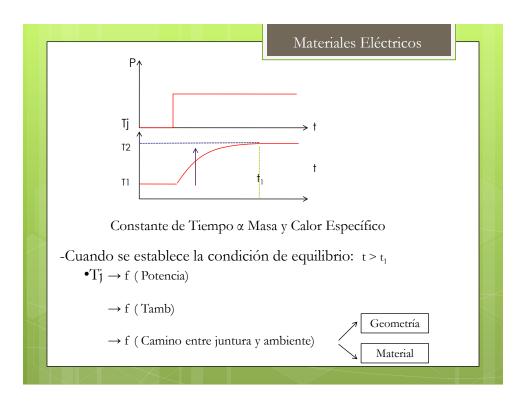

NPN 2**N**3055* PNP MJ2955


*Motorola Preferred Device


15 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 60 VOLTS 115 WATTS


CASE 1-07 TO-204AA (TO-3)





	RESISTENCIA TER	MICA CONTENEDO	OR -DISIPADOR	
Tipo de contenedor	Contacto directo sin mica	Contacto directo y silicona	Contacto con mica	Contacto con mica silicona
TO.5 TO.39 TO.126 TO.220 TO.202 TO.152 TO.90 TO.3P. TO.59 TO.117 SOT.48 DIA.4L TO.66	1 1,4 0,8 0,8 0,8 0,5 0,4 1,2 2 1,8 1,1	0,7 0,7 1 0,5 0,5 0,5 0,3 0,2 0,7 1,7 1,5 0,7 0,65	1,4 1,4 1,4 1,2 1 2,1	1,5 1,3 1,2 1,2 0,9 0,7 1,5
OT.48 A.4L O.66	1,8 1,1	1,5 0,7 0,65	0	

