
© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 1

Subtyping Best Practices
Tips and Traps for Data Modelers

David A. Ruble
Principal Senior Partner

P.O. Box 4008 – Federal Way, WA 98063
(253) 946-2690

www.ocgworld.com

Subtyping is a powerful technique used by data modelers and class modelers to portray
generalization / specialization relationships. It is also a technique that can be highly abused. If
employed improperly, it can twist a good data model into an unusable mess.

In this white paper, OCG’s David Ruble offers some tips for the proper use of subtyping that will
improve your model, and help you avoid some of the most common subtyping traps.

http://www.ocgworld.com/

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 2

Subtyping Best Practices – Tips and Traps for Data Modelers

Purpose

One of the most powerful techniques available for data modelers is the supertype/subtype
relationship, yet is one of the more oft-abused practices. The purpose of this paper is to highlight
several instances of improper use of subtyping, and to suggest alternate patterns that are more
robust.

Overview of Supertyping / Subtyping

The Supertype/Subtype relationship is an important tool in software engineering. It distills
common characteristics and behavior that pertain to all members of a group, and isolates
characteristics and behavior that are particular to members of a group’s subgroups. At design
time in object-oriented systems, this will lead very directly - with few modifications - to an object-
oriented class-inheritance hierarchy with high stability and reusability across various applications.
In relational database designs, it gives the designer choices to retain the subtypes and supertype,
collapse them all into the supertype, or implement only subtypes.

Supertype / Subtype example

In the real world, many objects belong to a similar class, but themselves have divergent
characteristics and/or behavior. Planes, Trains and Automobiles are all examples of the class,
Vehicle. One may have a valid business reason to refer to the collective fleet of a company’s
vehicles, and therefore it is useful to create a supertype entity: Vehicle, which can hold the
attributes common to all members of its class, and also to participate in relationships valid for all
members of its class. In the following figure, we see that the entity Vehicle has a set of attributes
common to all vehicles, and that all vehicles of interest to the business can participate in
relationship that defines the owning Organization.

The next diagram reveals the power of the subtype relationship. In this diagram the subtypes of
Vehicle, Plane, Train and Automobile; have been broken out as separate entities, attached to their
supertype. The “X” in the subtyping symbol denoting that the relationship is exclusive – meaning
any instance of vehicle can be only a plane or a train or an automobile.1

1 Obviously, Chitty Chitty Bang Bang would violate this rule, but one could remove the exclusivity if

modeling for Disney.

owns

Organization
Vehicle

vehicle ID

average cruising speed
gross weight tons

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 3

The subtyping on the diagram exposes several valuable business rules which would otherwise be
buried in some dark corner of a dense written specification. First, we can see that each of the
subtypes have attributes which describe characteristics unique to the subtype. For example, it is
only desirable that planes have a “current altitude” above the ground. Similarly, it is interesting
for the business to know how many airbags are in a given automobile. (I refer to the automobile’s
equipment, not its current population of consultants.) While subtyping to distinguish
characteristics is a fine and illuminating modeling practice, it is even more revealing when
subtypes are discovered to participate in relationships that are exclusive to the subtype. In the
prior example, only planes can be under the current control of an Air Traffic Control Site.

If the reader will indulge me just a bit further, let’s complicate this seemingly simplistic example
before we move into the labyrinth of subtyping more esoteric entities such as Party.

Getting ugly with multiple subtypes

It’s fairly common that one finds multiple ways to dice and slice the supertype. What’s an analyst
to do? Some shops allow their analysts to adorn their models with any number of competing
subtype discriminators at the same level – leaving it for the design team to sort out later. Some
analysts, (including present company), recall being roughed up in the parking garage after hours
by an unruly mob of programmers, and therefore try to resolve competing subtyping strategies
before the project starts to run out of time and money.

Consider once again, our Vehicle model. In the following example, the modeler has discovered
that the business has a need to distinguish between passenger vehicles and those which haul
cargo – and that some vehicles are licensed to do both.

owns

currently controls

Vehicle

vehicle ID

average cruising speed
gross weight tons

Automobile

vehicle ID (FK)

number of airbags

Air Traffic Control Site
Plane

vehicle ID (FK)

wingspan
current altitude

Train

vehicle ID (FK)

maximum number of cars

Organization

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 4

Now let’s see how much of a mess we can make of this model. Suppose we uncover the
requirement to record the minimum legroom available on passenger planes. The following model
will make most data modelers and even the most strident object-oriented class modelers reach
for their revolvers:

Here, we’ve run smack-dab into the specter of multiple inheritance. Multiple inheritance occurs
when a subtype has more than one possible supertype. In essence, the model says that a
Passenger Plane inherits all of the characteristics of both the Plane and the Passenger Vehicle.
As clever humans, we are still able to wrap our minds around this concept, but most
programming languages or database management systems simply throw up their electronic
hands when this situation is encountered.2

In this example, the subtyping is analytically accurate, but it will require rework at design time to
implement a solution. It would be preferable to find an equally analytically accurate expression
of the business rules that requires less work at design time.

2 The C++ language allows for multiple inheritance but it is often considered dangerous territory by some

programming standards.

Automobile

vehicle ID (FK)

number of airbags

Plane

vehicle ID (FK)

wingspan

current altitude

Train

vehicle ID (FK)

maximum number of cars

Vehicle

vehicle ID

average cruising speed

gross weight tons

Cargo Vehicle

vehicle ID (FK)

cargo capacity tons

cargo capacity cubic feet

Passenger Vehicle

vehicle ID (FK)

passenger capacity

Automobile

vehicle ID (FK)

number of airbags

Plane

vehicle ID (FK)

wingspan
current altitude

Train

vehicle ID (FK)

maximum number of cars

Vehicle

vehicle ID

average cruising speed
gross weight tons

Cargo Vehicle

vehicle purpose ID (FK)
vehicle pupose type code (FK)
vehicle ID (FK)

cargo capacity tons
cargo capacity cubic feet

Passenger Vehicle

vehicle purpose ID (FK)
vehicle pupose type code (FK)
vehicle ID (FK)

passenger capacity

Passenger Plane

vehicle purpose ID (FK)
vehicle pupose type code (FK)
vehicle ID (FK)

minimum legroom inches

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 5

Subtype discriminators

The answer to cleaning up our subtyping example lies in the subtype discriminator. The subtype
discriminator is the reason or discriminating factor that causes an instance of the supertype to
be a member of one subtype group versus another.

In our Vehicle example, our first instinct was to declare subtypes that were “a kind of” vehicle.
Subtyping by intrinsic property is a particularly strong practice because a member of one subtype
is unlikely to migrate to become a member of another. A Vehicle that starts life as an Automobile,
will go to the wrecking yard as an Automobile.

In our second attempt to subtype Vehicle, the subtyping discriminator was not an intrinsic
property of the Vehicle; rather it was the “purpose” for which the vehicle is used. Essentially, it is
the “role” the vehicle plays in the company. Additionally, a vehicle can be repurposed from one
to the other throughout its useful life, and could actually be licensed to haul passengers and cargo
at the same time. If our objective is to avoid multiple subtype discriminators at the same level,
then we need to look for a different strategy for modeling the vehicle’s various purposes.

An alternative strategy for modeling role

One strategy for avoiding multiple subtyping is to create an entity that represents the real-world
item’s unique characteristics that are pertinent to the roles it plays. In the following model, an
entity called Vehicle Purpose has been created, and it has been subtyped to hold the facts
gathered when a vehicle plays the role of Passenger Vehicle or Cargo Vehicle.

Notice that this expression is as analytically correct as the previous example. A Vehicle can be
used for one or more Vehicle Purposes – and a Vehicle Purpose can be Cargo Vehicle, Passenger
Vehicle. The lack of an “x” in the subtyping symbol tells us that a vehicle’s purpose can be both
cargo and passenger at the same time. A single instance of Vehicle can therefore have up to two
instances of Vehicle Purpose, but only one instance per Vehicle Type. By subtyping Vehicle
Purpose, we can easily demonstrate that the additional attributes of a Cargo Vehicle are different
than those of a Passenger Vehicle. Furthermore, the subtypes may participate in relationships
that are unique to passenger or cargo vehicles. Designers will note that this expression of the

is used for

Automobile

vehicle ID (FK)

number of airbags

Cargo Vehicle

vehicle purpose type code (FK)
vehicle ID (FK)

cargo capacity tons
cargo capacity cubic feet

Passenger Vehicle

vehicle purpose type code (FK)
vehicle ID (FK)

passenger capacity

Plane

vehicle ID (FK)

wingspan
current altitude

Train

vehicle ID (FK)

maximum number of cars

Vehicle

vehicle ID

average cruising speed
gross weight tons

Vehicle Purpose

vehicle purpose type code
vehicle ID (FK)

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 6

business requirements can be directly implemented with little or no rework, and does not suffer
from the perils of multiple inheritance. Database designers still are allowed the choice of whether
to implement Vehicle Purpose as one, two or three tables, or even roll it back into Vehicle as a set
of optional fields.

Party vs. Party Role

Now let’s try out these concepts with something more complex – the Party model.

Party is at the core of enterprise data models that have the need to recognize that the people
and organizations of interest to the business play multiple roles – but remain the same
individuals and organizations. The Party concept has been growing in popularity as businesses
attempt to get a complete view of their customers, and fully understand their total involvement
with the enterprise.

In most traditional systems, people and organizations were modeled separately, according to
the role they played. Customers where physically represented in the order entry, billing and A/R
Customer tables. Vendors took up residence in the A/P system, Employees in the HR systems,
and so on. Many of the data integration challenges of the last decade were to consolidate
competing Customer, HR and Accounting systems within an enterprise and at minimum, try to
whittle the redundant representations of these roles down one system of record. In many
companies, scant attention has been paid to consolidating a total view of all parties of interest
to the enterprise.

There are some industries and areas of public service that have had pressing needs to
understand a party’s total involvement, and have thus pioneered the concept of Party modeling.
For example, public health systems for epidemiology and contagious disease investigation have
the need to know that a patient on one case is a family member or contact person on other
cases. Court systems have had a need to know that a defendant in one case was a co-defendant
or witness in another. Even in business systems, there have been examples of companies paying
large sums of money to their vendors, unaware that the same vendor was delinquent on their
payments as a customer. The inability to cross check A/P with A/R has been costly for many
firms.

The impulse to subtype Party by the roles they play is very strong. We are so engrained to think
of parties in terms of Customer, Vendor, Employee, and Agent that our first instinct may be to
use role as the subtyping discriminator for Party.

While one quadrant of the analyst’s brain is busily subtyping Party by role, another section of
gray matter immediately notices that parties darken our door in the form of Persons and
Organizations. In the following diagram, we see that Party has been subtyped into Person and
Organization, and in a separate structure, into Customer, Vendor and Employee. The notation
indicates that a Party is either a Person or Organization, but not both. Conversely, a Party can
be Customer and also a Vendor and also an Employee. As Oliver Hardy was fond of saying,
“Another fine mess you’ve got us into this time, Stanley.” We are once again confronted with
multiple subtyping at the same level.

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 7

If we hearken back a few pages to our Vehicle example, we can employ the same guiding
principles to help us avoid multiple subtype discriminators for Party. Which of these subtyping
discriminators is the stronger case for subtyping Party? Our heuristic for subtyping a real world
thing by its intrinsic properties leads to select Person/Organization as the stronger candidate.

A Person is born a person and dies a person. Likewise, Organizations do not morph into
becoming people at any point in their existence. Customer, Vendor and Employee, on the other
hand, are roles played by parties under specific circumstances.

Just like we did with the purpose of the vehicle, we can promote Party Role to become an entity
in its own right, and separate it from the intrinsic properties of the parties themselves.

The way we read the modified diagram (above), is that a Party can play many roles in the
organization, and that the roles one plays may be any combination of Employee, Customer
and/or Vendor (by virtue of the inclusive symbol). We can now add the attributes that are
particular to Employee, Customer and Vendor to their respective entities, and the subtypes are
free to participate in relationships that are exclusive to instances of their respective entity types.
Like our solution for Vehicle, this model can be implemented with little design rework.

While more expressive, this model isn’t perfect. The party role type code is necessary at the
supertype level to indicate that although a Party can have multiple Party Roles, they can only
have one per subtype. There is no need for the party role type code at the subtype level since
the existence of the subtype entity is sufficient; however the CASE tool includes it as part of the

Party

party ID

Person

party ID (FK)

Organization

party ID (FK)

Customer

party ID (FK)

Vendor

party ID (FK)

Employee

party ID (FK)

plays

Customer

party ID (FK)
party role type code (FK)

customer number
customer since date
gold club member flag

Employee

party ID (FK)
party role type code (FK)

employee number
original hire date

Organization

party ID (FK)

Party

party ID

Person

party ID (FK)

Vendor

party ID (FK)
party role type code (FK)

vendor number
primary vendor flag

Party Role

party ID (FK)
party role type code

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 8

key. It is also desirable to mark employee number, customer number and vendor number as
alternate primary keys of their respective subtypes. In all likelihood, the database designers will
implement these subtype entities as separate tables, and carry the party ID as a unique foreign
key.

The perils of subtyping by state

Another subtyping practice that comes to grief at design time is subtyping by the status of the
supertype. The status of an entity tracks its progress as an instance of the entity migrates
through the various phases of its lifecycle.

Status is particularly important entities such as Customer Order and Customer Account. The
information collected about an Order or Account can vary tremendously depending on the
Account’s state – making it very tempting to trot out our old friend, subtyping, however,
modeling state using subtyping can be tricky.

Consider the following model of a Loan Account:

In this model, the analyst has subtyped Loan Account into the various states that the Loan
Account passes during its lifetime. The analyst is attempting to show that some attributes are
collected during specific states, and not during others. The analyst’s instinct is right on, but the
execution of the model has a problem.

A subtype inherits the key of the supertype. In this case, the account number is the key of Loan
Account, and it remains the key of a Loan Account throughout the life of the loan. The exclusive
nature of the subtyping relationship informs us that if a Loan Account is a member of one
subtype, it cannot be a member of any other subtype at the same time.

Imagine an instance of loan moving along the line as it changes from state to state. In a physical
sense, when a loan goes from being an instance of an Unapproved Loan to an instance of an
Approved Loan, the model implies it must re-instantiate itself as the new subtype, and at the same
time kill itself off as an Unapproved Loan. This form of object-oriented hari-kari due to subclass
migration is not catered to by most environments. Now, this wouldn’t be a problem in the logical
model if we only needed to keep a snapshot of the loan in its current state. However, due to the

Customer

customer number

customer since date
gold club member flag

Denied Loan

account number (FK)

denial date
denial reason code

In Service Loan

account number (FK)

current balance
last payment date

Loan Account

account number

customer number (FK)

Paid Off Loan

account number (FK)

pay off date

Unapproved Loan

account number (FK)

application date
requested loan amount

Approved Loan

account number (FK)

approval date
approved loan amount

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 9

fact that we need to keep an accumulated history of loan attributes, this becomes unacceptable.
Subtyping is simply the wrong technique for this problem.

A solution to this modelling problem is to treat the various states of Loan Account as aspects of a
Loan Account rather than as subtypes. This is handled somewhat well in UML by using the
aggregation symbol, but Erwin offers no equivalent. In the diagram, below, we see that a Loan
Account can have various aspects that are collected over time. The change in loan account status
code causes the creation of a new aspect.

It looks an awful lot like subtyping, but it’s not. We seem to be stretching the limits of a static
data modeling notation. Many modelers choose to collapse all of the attributes back into Loan
Account, and employ a different model to convey which attributes are created or updated in
various states of the loan. In the following diagram, all attributes are shoved back into Loan
Account, and Loan Account Status has been created to hold the status value and the status date.

The snippet of a model, shown above, is highly simplified from a real Loan Account. On a real
model, we will probably find that certain aspects of the loan, such as the Loan Application and
perhaps Loan Actions, such as approval or denial, might warrant separate entities.

Entity Lifecycle Matrices

An entity lifecycle matrix is a more robust model for showing how attributes are added over
time as the entity passes through its respective states. In the simple matrix, shown below, we
can see the attributes listed on the y axis, and the states of the entity listed on the x axis. In
each cell, one can denote whether the attribute’s value is created or updated while in that state.
Matrices such as this one can also be used to show changes in optionality.

are aspects of
Loan Account

is borrower on

Customer

customer number

customer since date
gold club member flag

Denied Loan

account number (FK)

denial date
denial reason code

In Service Loan

account number (FK)

current balance
last payment date
onboard date

Loan Account

account number

customer number (FK)
loan account status code

Paid Off Loan

account number (FK)

pay off date

Unapproved Loan

account number (FK)

application date
requested loan amount

Approved Loan

account number (FK)

approval date
approved loan amount

Customer

customer number

customer since date
gold club member flag

Loan Account

account number

customer number (FK)
requested loan amount
denial reason code
approved loan amount
current balance
last payment date
paid off flag

Loan Account Status

account number (FK)
loan account status code

status date

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 10

Entity Lifecycle Matrix: Loan Account

 Unapproved Denied Approved In Service Paid Off

Account number C

Requested loan
amount

C

Denial reason code C

Approved loan
amount

 C

Current balance C U U

Last payment date U U

Paid off flag C

State-transition Models

In addition to this type of matrix, state transition models are another tool that the analyst can
use to show which business events or processes kick the entity from one state to the next. By
showing all of the legal transitions, the illegal transitions can be discerned by virtue of their
omission.

In the state-transition diagram, above, we can see the potential paths that a loan can take as it
moves through its lifecycle. This type of model is very easy to construct and very easy to read.
A bank employee looking at this model may immediately ask, “What happens if the borrower
withdraws their application?” Hence, we have spotted a hole in our analysis that may not have
been obvious by looking at an entity-relationship diagram.

Summary

In this paper, I have exposed two common misapplications of subtyping. The first deals with
multiple subtype discriminators at the same level – which is analytically accurate, but causes
nightmares for designers. An equally analytically accurate technique is to use regular

Unapproved

Approved

Paid Off

In Service

Credit Manager denies Loan

Credit Manager approves Loan

Service Department boards Loan

Borrower pays off Loan Balance

Borrower applies for Loan

Loan Account.Loan Account Status

Denied

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 11

associations to separate roles an entity plays from the actual entity itself. This causes less grief
downstream.

Another common misapplication of subtyping is to subtype by state. Subtyping by state is really
only useful if the application has no responsibility of remembering anything about the entity
aside from the characteristics of its current state. That is rarely the case in business systems.
Therefore, subtyping is the wrong technique, rather the entity is an aggregation of the various
aspects of the entity that are built up over time as it passes through its lifecycle. This dynamic
accretion of information is difficult to depict on a static entity-relationship model, and the
analyst may find it more illuminating to use an Entity-Lifecycle Matrix along with a State-
Transition model.

© 2006, 2014 – Olympic Consulting Group. All rights reserved. Page 12

About the author

David Ruble, a principal senior partner at Olympic Consulting Group (www.ocgworld.com), is a
senior analyst, designer, author and educator. He is widely regarded as an expert in the field of
business analysis, information modeling, GUI design and functional specification. He has been a
principal analyst and designer of many mission-critical global corporate information systems –
linking suppliers and customers worldwide. David also has significant experience designing
applications in the transportation, health care and public safety sectors. His background in
business, technology and art create a unique skill set that allows David to communicate with
ease among business people, technologists and graphic designers.

As an educator, he has taught software engineering techniques to hundreds of students
throughout the United States. He is the author of Practical Analysis & Design for Client/Server &
GUI Systems, published by Prentice-Hall, 1997. His book has been used widely in colleges and
universities throughout the United States and Thailand, Mexico and Argentina and is considered
a timeless classic in the field of business analysis.

About Olympic Consulting Group

Olympic Consulting Group (OCG) is a full-service system architecture and development firm
serving the Puget Sound region since 1997. The firm specializes in delivering high-performance
consulting in the analysis, design, development and project management for complex business
systems and government agencies. www.ocgworld.com

Selected Bibliography

Page-Jones, Meilir. Role Modeling. PowerPoint Presentation, Bellevue, WA: Wayland Systems,

Inc., 2000

Ruble, David A. Practical Analysis & Design for Client/Server & GUI Systems. Englewood Cliffs, NJ:

Prentice-Hall, 1997

http://www.ocgworld.com/
http://www.amazon.com/exec/obidos/tg/detail/-/013521758X/qid=1051651850/sr=1-41/ref=sr_1_41/102-3079518-8962556?v=glance&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/013521758X/qid=1051651850/sr=1-41/ref=sr_1_41/102-3079518-8962556?v=glance&s=books
http://www.ocgworld.com/

