

TEMA 5: MEDICIÓN DE CAUDAL DE FLUIDOS

·La variable caudal, tipos. Perfil de velocidades, factores que determinan el régimen de flujo, fluidos no newtonianos, distorsiones. Características especiales de caudalimetros: amplitud de rangos, totalización. Elementos diferenciales convencionales, y de flujo crítico. Medidores de área variable y de desplazamiento positivo. Caudalímetros a turbina, oscilatorios, electromagnéticos y ultrasónicos. Medición de caudal másico: directos, inferenciales, térmicos y con corrección por densidad. Caudalímetros para canales abiertos. Selección de caudalimetros: especificación y procedimiento.

TIPOS DE CAUDALÍMETROS (Norma BS-7405)

- Convencionales de presión diferencial
 - Otros tipos de presión diferencial
 - De desplazamiento positivo

& Rotatorios

- De Área variable
- Oscilatorios para fluidos
 - Electromagnéticos
- Ultrasónicos
- Másicos directos e indirectos
- Térmicos
- Otros para fluidos en ductos cerrados

- De canal abierto
 - Para sólidos

CAUDALÍMETROS PARA CANALES ABIERTOS

Es ampliamente utilizado en muchas industrias, en particular en la medición de efluentes industriales y domiciliarios. Son típicamente utilizados para grandes flujos que no pueden ser transportados dentro de conductos.

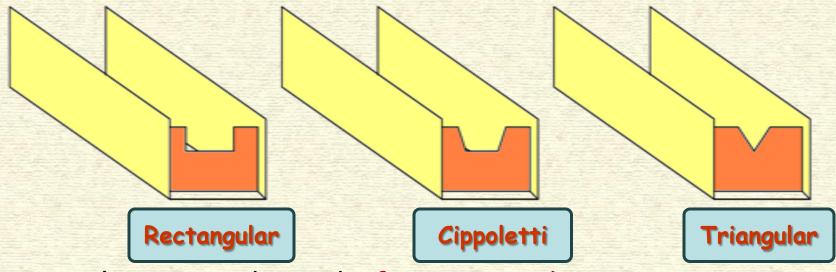
Para medir el caudal, se estrecha la sección transversal del canal, acelerando la circulación y variando la altura del líquido.

COMPONENTES DEL SISTEMA DE MEDICIÓN

Elemento Primario:

Vertedero o canaleta que acelera el flujo

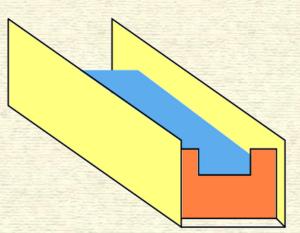
Elemento Secundario:

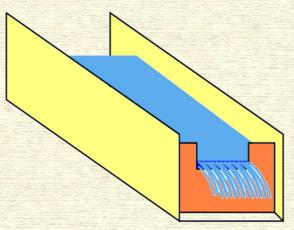

Transmisor/indicador de nivel

Procesos y gestión Industrial

CAUDALÍMETROS PARA CANALES ABIERTOS Vertederos

Un vertedero es una placa (metálica o de concreto) colocada transversalmente a la corriente con una hendidura a través de la cual pasa la corriente líquida.




Se utilizan vertederos de formas variadas que provocan una diferencia de alturas de líquido en el canal entre la zona anterior del vertedero y su punto más bajo.

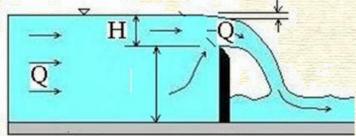
El vertedero debe formar un ángulo recto con la dirección del caudal y el canal aguas arriba debe ser recto como mínimo en una distancia de 10 veces el ancho.

CAUDALÍMETROS PARA CANALES ABIERTOS Vertederos

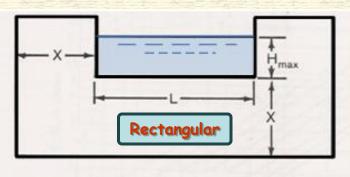
La altura del Líquido sobre el vertedero se relaciona mediante fórmulas empíricas.

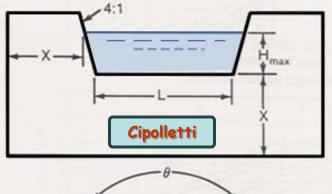
Rectangular

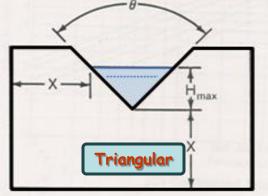
$$Q = 3.33(L - 0.2H)H^{1.5}$$


Triangular

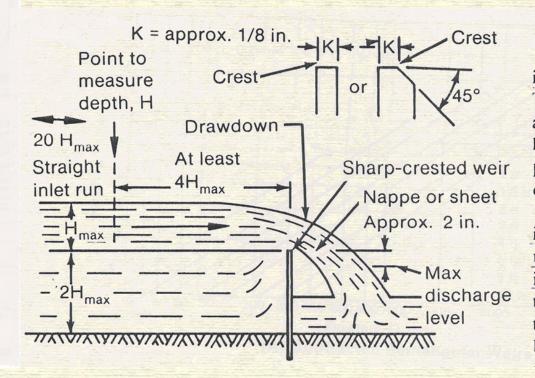
$$Q = 2.48 \left(\tan \frac{\theta}{2} \right) H^{2.5}$$


Cipolletti


$$Q = 3.367LH^{0.5}$$



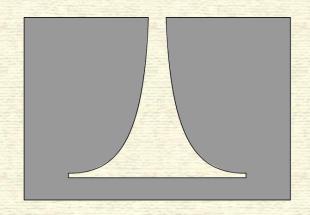
CAUDALÍMETROS PARA CANALES ABIERTOS Vertederos



 $L \ge 3H_{max} \quad X \ge 3H_{max}$

Para el dimensionamiento, se debe determinar la Hmax correspondiente al caudal máximo. Las dimensiones restantes se relacionan con este parámetro.

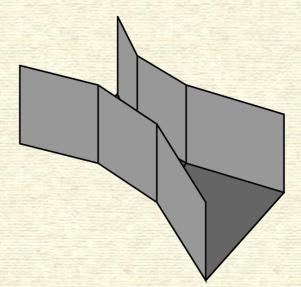
CAUDALÍMETROS PARA CANALES ABIERTOS Vertederos


La precisión varía del 2 al 5 % con rangeabilidad alta (25:1).

Requieren mantenimiento por acumulación de sedimentos contra el vertedero.

CAUDALÍMETROS PARA CANALES ABIERTOS Vertederos lineales

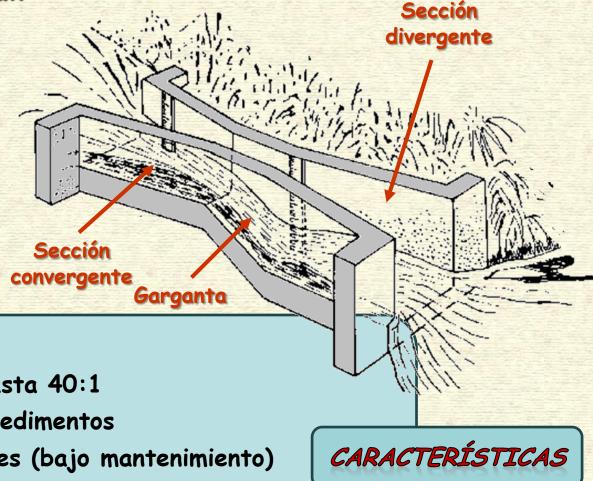
No se usan a menudo, debido a su estructura intrínsecamente débil y tendencia a obstruirse con los


sólidos en suspen-

sión del líquido

Los vertederos vistos tienen una relación no lineal entre altura de la cresta líquida y caudal.

Pa tener una relación lineal, el vertedero debe tener un perfil muy especial como el de la figura.


Este elemento fue desarrollado por R.L. Parshall en 1920 que estableció el estándar.

Se fabrican como piezas completas de metal u otro material resistente o se construyen en concreto.

Estos dispositivos se aplican con líquidos con alto porcentaje de sólidos o cuando el espacio disponible no es suficiente para usar vertederos.

Las canaletas consisten restricción la sección de pasaje de un canal en el que también se cambia el nivel de fondo.

Pérdida de carga baja

Alta Rangeabilidad: hasta 40:1

Evita acumulación de sedimentos

No posee partes móviles (bajo mantenimiento)

Moderada exactitud (típicamente 3% a 10% R).

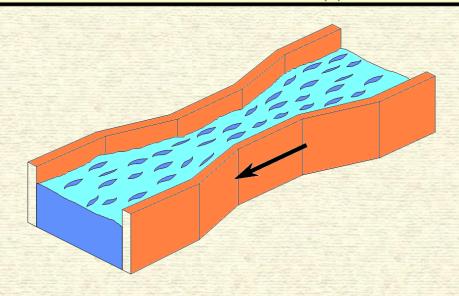
Gran variedad de tamaños y disponibles comercialmente.

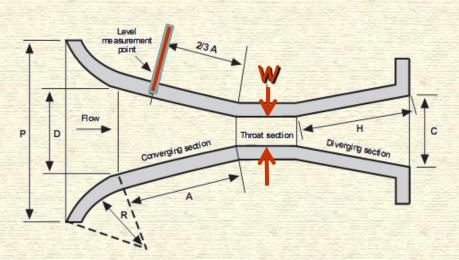
Pueden diseñarse, pero tienen una geometría complicada

El caudal de líquido se relaciona con la potencia 3/2 del nivel (aunque variable de acuerdo al tamaño).

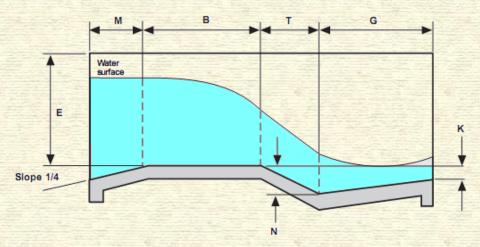
Para el dimensionamiento se detemina
primero h_{max} para el
máximo caudal y con
éste calcula W (ancho
de la canaleta en la
zona estrechada).

Hay fórmulas y gráficas disponibles


THROAT WIDTHS	FORMULAS
3"	$Q = 0.992 h_a^{1.547}$
6"	$Q = 2.06h_a^{1.58}$
9"	$Q = 3.07h_a^{1.53}$
12"	$Q = 3.95h_a^{1.55}$
18" - 72"	$Q = 4.00Wh_a^{1.522(W^{0.026})}$

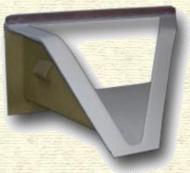

Where:

Q = Discharge in cubic feet per second (cfs)


 h_a = Depth of water in flume inlet in feet (ft)

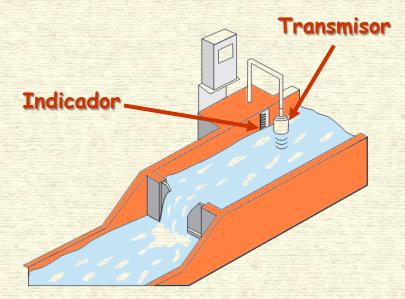
W = Flume throat width in feet (ft)

W	Α	В	С	D	Ε
3	18.38	18.0	7	10.9	24.0
6	24.44	24.0	15.5	15.63	24.0
9	34.63	34.0	15.0	22.63	30.0
12	54.0	52.89	24.0	33.25	36.0
18	57.0	55.88	30.0	40.38	36.0
24	60.0	58.88	36.0	47.50	36.0
36	66.0	64.75	48.0	61.88	36.0


W	Ε	F	G	K	N
3	24.0	6.0	12.0	1.0	2.25
6	24.0	12.0	24.0	3.0	4.50
9	30.0	12.0	18.0	3.0	4.50
12	36.0	24.0	36.0	3.0	9.0
18	36.0	24.0	36.0	3.0	9.0
24	36.0	24.0	36.0	3.0	9.0
36	36.0	24.0	36.0	3.0	9.0

Dimensiones en pulgadas

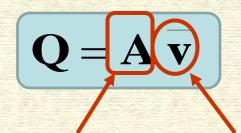
Hay varios tipos de canaletas para medición de caudal, aparte de la Parshall, que incluso se comercializan.



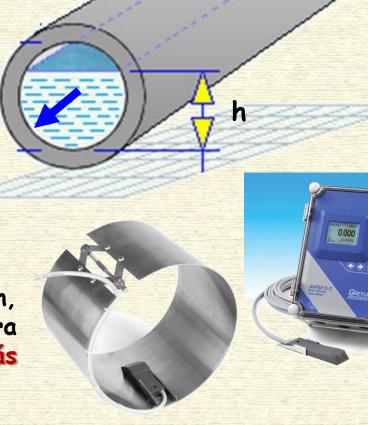
CAUDALÍMETROS PARA CANALES ABIERTOS Canaletas y Vertederos - Medición del nivel

Las canaletas y vertederos son elementos primarios. Se requiere medir el nivel para inferir el caudal.

Si solo se necesita una indicación local, bastará con una regla graduada en el punto de medición o un flotador.

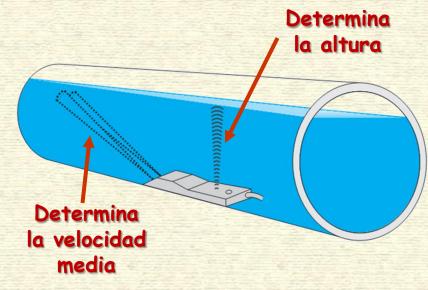


Si se necesita transmisión (y eventualmente con registro y alarma) lo más difundido en la actualidad son los medidores ultrásonicos.

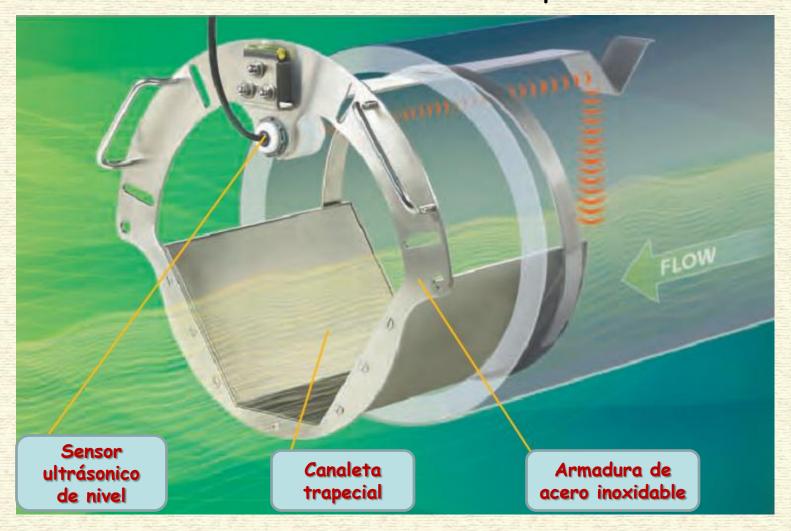

Antes era usual transmisores de presión diferencial (directos o por burbujeo según la posición del elemento primario).

Para medir el caudal que circula por una cañería que no está inundada completamente se requiere la velocidad (perfil) y la sección de pasaje.

Depende de la altura Depende del régimen y la altura


Los dispositivos que se comercializan, integran estas dos mediciones para inferir el caudal, utilizando uno o más sensores.

Hay sensores con un solo elemento sensible que utiliza ultrasonido (efecto Doppler). El transductor transmite pulsos en el medio a medir.


Las partículas o burbujas del medio reflejarán estos pulsos. Dicho sensor cambia al modo de recepción poco después de haber enviado un pulso y recibe el eco del ultrasonido como una característica del perfil de velocidades. El escaneo permite determinar la velocidad media.

El mismo dispositivo, envía ultrasonido en sentido vertical para calcular con el eco la altura de líquido. Mediante operación interna se infiere caudal.

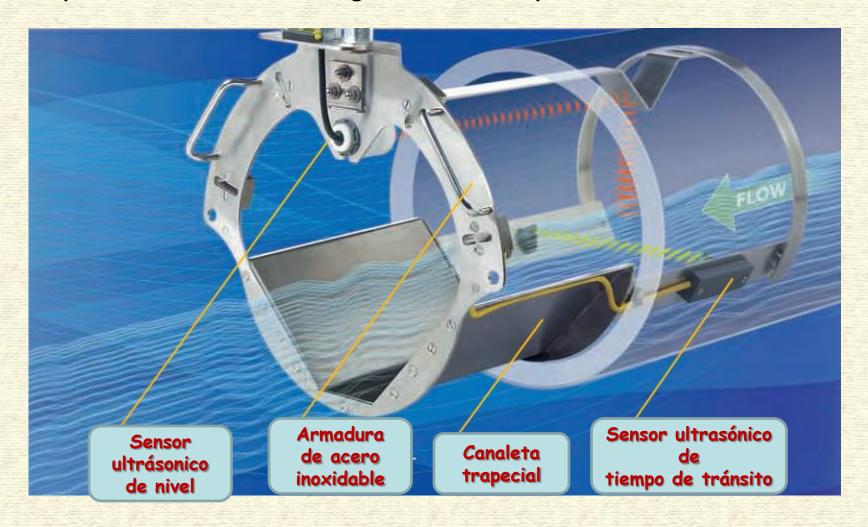
Hay dispositivos que montan en la cañería una canaleta y mediante ultrasonido infieren caudal midiendo altura del líquido

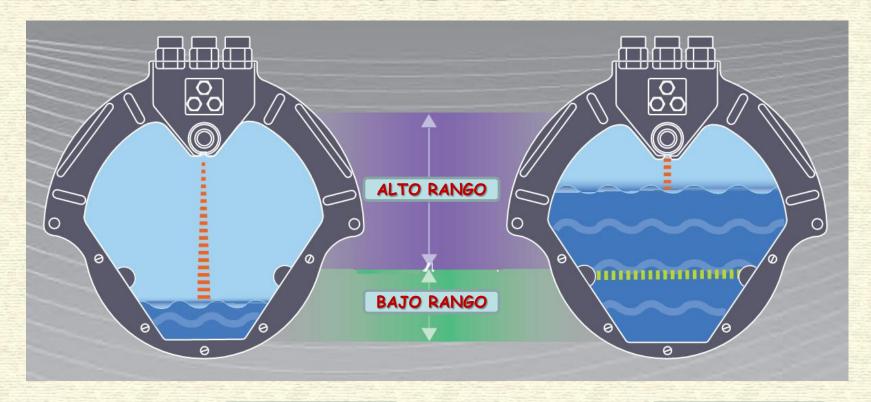
CARACTERÍSTICAS

Alta Rangeabilidad: hasta 60:1

Evita acumulación de sedimentos

No posee partes móviles (bajo mantenimiento)


Moderada exactitud (típicamente 3% a 5% R).


Disponibles para diámetros entre 4 y 24 plg

Se adaptan a la estructura existente.

Permite indicación, transmisión y salidas de alarmas e interruptores

Cuando la altura del líquido en el conducto puede cambiar en un rango amplio, se recurre a una segunda medición por ultrasonido.

BAJO RANGO

Por debajo de 1/3 de la cañería, Se mide nivel por ultrasonido en la canaleta trapecial.

ALTO RANGO

Por encima de 1/3 de la cañería, Se mide nivel por ultrasonido y se determina velocidad con sensores de tiempo de tránsito.

BAJO RANGO

Rangeabilidad: hasta 60:1

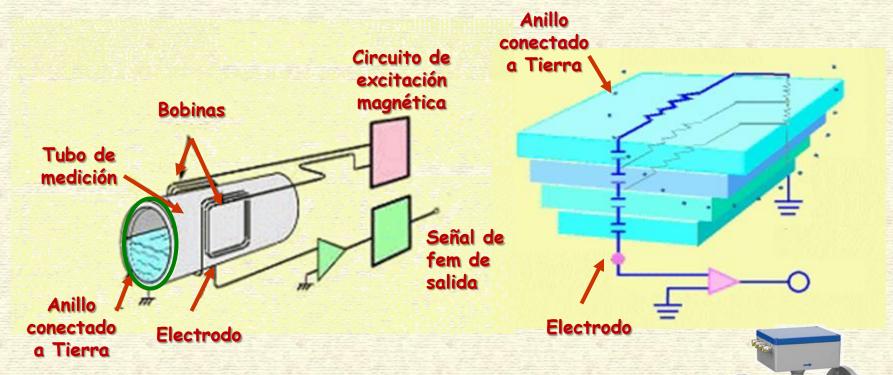
Exactitud (típica 3% a 5% R)

ALTO RANGO

Rangeabilidad: hasta 60:1

Exactitud (típica 1% a 2% R)

Diámetros: 4 a 24 plg


Se adaptan a la estructura existente.

Puede trabajar con cañería llena

Hay dispositivos electromagnéticos que sirven para medir flujo en cañerías no completamente llenas. El principio es similar.

Diámetros de 8 a 64 plg Medida cañerías llenas entre 10 y 100 %

Exactitud: 1% R

Condutividad mínima del liquido: 300 µS/cm

SELECCIÓN DE CAUDALÍMETROS

La variedad y cantidad de proveedores hace que la selección sea cada vez más compeja. La elección deberá satisfacer los requerimientos de la aplicación, performance y costo.

La norma británica BS-7405 empleando más de 100 diseños con más de 200 proveedores proporciona una metodología para la selección de caudalímetros.

La norma BS-7405 empleó el principio de funcionamiento para clasificar los distintos tipos de medidores que conformaron la estructura de la norma:

GRUPO DESCRIPCIÓN Convencionales de presión diferencial Otros tipos de presión diferencial De desplazamiento positivo Inferenciales Oscilatorios para fluidos Electromagnéticos Ultrasónicos Másicos directos e indirectos Térmicos 10 Otros para fluidos en ductos cerrados 11 Para sólidos 12 De canal abierto

Requerimientos de la aplicación

Las necesidades de la aplicación constituyen la restricción a examinar. primera descartar las alternativas no satisfactorias se consideran: diámetros, propiedades del fluido, restricciones de la instalación limitaciones ambientales.

Requerimientos de performance

Los requerimientos de performance reflejan la calidad de la medición y las necesidades para el control del sistema. Se puede consultar la Tablas de fabricantes para descartar elementos primarios que no cumplan con exigencias.

Requerimientos

de costo

El costo de compra e instalación (inversión) son fáciles de determinar. Los costos de mantenimiento y operacionales son más difíciles de definir y pueden tener mucha influencia

Requerimientos de la aplicación

1

Las necesidades de la aplicación constituyen la primera restricción a examinar. Para descartar las alternativas no satisfactorias se consideran: diámetros, propiedades del fluido, restricciones de la instalación y limitaciones ambientales.

- ¿Qué fluido se maneja? Gas, vapor, liquido, suspensión, pasta.
- ¿Fluido limpio o sucio? ¿Mezcla de fluidos?
- Condiciones de flujo (presión, temperatura, régimen).
- * Restricciones impuestas por la instalación (diámetro, tramos rectos, dirección del flujo).
- * Restricciones de las condiciones ambientales: temperatura, atmósfera inflamable, efecto de campos electromagnéticos.

Requerimientos de la aplicación

		AI	LIC	CAC	IO	NES	3						3						
Grupo	Tipo	Li	quid	los (1)					G	ises	(2)			Ot	ros	(2)		
		A	В	C	D	E	F	G	Н	J	K	L	M	N	P	Q	R	S	1
-1	Orificio	•	?		•			•		•	?	•		•	?		?	?	
	Venturi				•	•	•			•	?		?	?	?	•	?	?	-
SEE	Boquilla	•								•		?	. ?		?		?	7	
2	Area variable			5		#	?	3		•				46	100		719	?	
	De blanco (Target)					#									?		?		
	Pitot Promediante						?										?	?	-
	Boquilla sónica	35										?	?						
3	Paleta deslizante			#		7			•						-	?			
	Ruedas ovaladas			#		#										2		•	
	Piston giratorio		?			#										?		#	
	Diafragma para gases																		
	Giratorio de gas							3		•									
4	Turbina		-5		#	•	?								3	?	?	#	
	Pelton									?	?				13	?		?	
	Medidor mecánico														#	?			
	Turbina de inserción			•	•		Ų.			•				?	30	?	?	3	
5	Vortex										-	?				?			Ė
	Tipo Coanda																		
	Vortex de inserción			•		?		?	?	•			?		-			?	-
6	Electromagnético					#	?										?		
	Electromagnético de inserción					?									?		?		
7	Doppler			?	?	#			?	-6			ħ.E	Æ	•	•	?	?	
	Tiempo de Transito		?			#	?	#		#					?	2		#	-
8	Coriolis					#				?				E	?	?		#	
	Rotor de torsión		3												1				
9	Anemometro			?	?	#				•		-8	100						
505	De masa térmica		#														-		
10	Trazador		#					•	5	#	9.0	ij			-	?		#	+
	Låser			?	?														

- Adecuado, por lo general aplicable.
- ? Merece considerarse, algunas veces aplicable.
- # Merece considerarse, disponibilidad limitada o caro.
- El espacio en blanco indica no adecuado o no aplicable.

(2) Aplicaciones con gases

- J. Gases en general
- K. Flujos reducidos de gas (< 150 m³/hora)</p>
- L. Grandes flujos de gases (> 5000 m³/hora)
- M. Gases calientes (> 200 °C)
- N. Vapor

(1) Aplicaciones para líquidos

- A. Liquidos en general (< 50 cP)
- B. Flujos reducidos de líquidos (< 2 L/min)
- C. Grandes flujos de liquido (>1000 m³/hora)
- D. Grandes tuberias con agua (> 500 mm de diámetro)
- E. Líquidos calientes (> 200 °C)
- F. Liquidos viscosos (> 50 cP)
- G. Liquidos criogénicos H. Líquidos sanitarios

(3) Otras aplicaciones

- P. Suspensiones y flujos de particulas
- Q. Mezclas liquido-liquido
- R. Mezclas líquido-gas
- S. Liquidos corrosivos
- T. Gases corrosivos

1

Requerimientos de la aplicación

			0	GA /AP	SES OR:	5)			=	JQL	JID:	s								,		
					22200	200		310,515	3		3/	CORROSVE	CLIBBID		RSEFLOW	SATING ROW	EMPERATUR	IIC	I-RILED PIPES	N-NEW TONIANS	CHANNEL	
LOWMETER	P1PE SIZE, in. (mm)	STEAM	CLEAN	DIRTY	H9IH	MOT	CEAN	нэн	MOT	DIRTY	CORROSIVE	VERY CO	FIBROUS	ABRASIVE	REVERSE	PULSATIN	HIGHTEN	CRYOGE.	⊓H-IWBS	MON-NEW	OPEN CH	TYPICAL Reynolds number ‡ or viscosity
QUARE ROOT SCALE: MAX	IMUM SINGLE RAN	GE 4	ŧ1(Тур	ical)**																
Orifice					Γ	Γ	Г					Γ									П	
Square-Edged	1.5 (40)	1	1	X	1	1	1	X	?	X	?	X	X	X	SD	?	1	1	X	?	х	R - 10,000
Honed Meter Run	0.5-1.5 (12-40)	1	1	x	1	1	1	?	?	х	?	x	x	х	SD	?	1	1	x	?	х	Ro - 10,000
Integrated	(0.5 (12)	?	1	X	1	1	1	х	?	х	?	?	X	X	SD	?	?	X	X	?	х	Ro - 10,000
Segmental Wedge	412 (300)	1	1	1	1	1	1	?	1	?	?	х	?	?	SD	?	1	1	X	?	х	Ro - 500
Eccentric	-2 (50)	?	?	1	1	1	?	х	?	?	?	Х	?	х	SD	?	4	1	X	?	х	
Segmental	14 (100)	?	?	1	1	1	?	x	?	?	?	x	?	х	SD	?	1	1	X	?	х	R ₀ • 10,000
V-Cone	0.5-72 (12-1800)	1	1	?	1	1	1	?	1	?	?	X	?	?	х	?	?	7	X	?	х	Ro - 10,000
arget***	(0.5(12)	?	1	1	1	1	1	?	1	1	?	X	X	x	?	X	?	?	X	?	x	R ₀ : 8,000-5,000,000
•		1	1	?	1	1	1	?	1	7	?	X	1	?	X	?	,	,	X	?	X	R ₀ • 100
/enturi	2 (50)	7	,	?	1	1	1	X	?	,	?	x	X	x	X	,	,	,	x	?	X	Ro • 75,000Ł
low Nozzle	·2 (50)		1	X	1	1	1	X	?	X	1	X	X	X	X	,	,	,	X	,	X	Ro + 50,000 Ł
ow Loss Venturi	-3 (75)	X	1	X	1	1	1	X	?	X	?	x	X	x	x	x	,	,	X	X	X	Ro + 12,800£
ritot	·3 (75)	^			1	1	4	X	?	SD	?	X	X	X	SD	X	•		X	X	X	Ro + 100,000Ł
weraging Pitot	·1 (25)	4	1	SD	1			-		-		X		X	√	X		?		?	X	Ro · 40,000Ł
lbow	·2 (50)	Х	٧.	?	₹.	4	₹.	х	?	?	?		X		٧	Α,	ſ	1	X	ľ		Rp > 10,000 L
aminar	0.25-16.6 (6-400)	?	1	X	4	4	4	4	f	X		Х	X	X	X	4	X	X	A	٨	^	Ro + 500
INEAR SCALE TYPICAL RAN	(GE 10:1 (Or better)		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		
Magnetic*	0.1-72 (2.5-1800)	X	Х	Х	Х	X	√	?	√	√	√	√	4	√	4	√	?	X	?	?	?	R _D > 4,500
Positive Displacement		H							Š			0						9				110. 1,500
Gas	«12 (300)	X	1	х	?	4	х	х	х	х	х	х	X	Х	X	Х	Х	X	X	X	х	
Liquid	·12 (300)	X	X	X	X	X	1	1	?	X	?	х	X	X	X	Х	?	X	X	X	х	No D. Harda J. C. COO.
Turbine																				-		No Ro limit : 8,000 c
Gas	0.25-24 (6-600)	SD	1	X	1	1	х	х	х	х	X	х	X	X	SD	SD	?	?	X	X	?	
Liquid	0.25-24 (6-600)	х	x	х	x	х	1	x	?	х	?	х	х	SD	SD	SD	?	?	X	х	?	
Ultrasonic	0.25 2.1(0 000)	-	_	-	_		-												5			Rp > 5,000, ±15 cS
Time of Flight	· 0.5 (12)	х	SD	SD	SD	SD	1	?	?	x	1	1	?	?	1	1	x	?	x	x	?	
Doppler	·0.5 (12)	X	X	X	X	X	X	?	?	1	1	1	1	1	1	1	х	Х	X	?	x	R ₀ * 10,000
		?	1	X	X	ĵ	1	x	?	x	?	?	X	x	X	?	?	7	X	X	X	Rp • 4,000
Variable-Area (Rotameter)	3 (75)	1	1	?	1	1	1	x	?	?	?	X	X	X	X	X	?	?	X	X	x	No Rolimit, 4 100 cS
Vortex Shedding	1.5-16 (40-400)	1	1	?	1	,	1	X	?	X	?	X	X	X	X	X	?	X	X	X	X	Rp • 10,000, • 30 cP
Vortex Precession (Swirl)	·16 (400)	-	-	_	1	4	-							X	X	?	?	?	X	X	x	Rp+10,000, +5 cP
Fluidic Oscillation (Coanda)	15 (40)	X	X	X	X	X	1	х	X	?	?	X	X	^	٨	-	1	1	٨	^	^	Rp · 2,000, « 80 cS
Mass				_		_																4
Coriolis	0.25-6 (6-150)	?	?	?	1	1	1	1	4	1	?	?	?	4	?	?	?	?	X	4	X	No Ro limit
Thermal Probe	·72 (1800)	х	4	?	4	4	4	?	4	1	?	?	?	?	х	?	?	X	х	?	Х	No Ro limit
Solids Flow meter	+24 (600)	X	X	X	X	X	X	SD	X	?	X	X	SD	SD	X	SD	SD	X	1	X	X	140 Mg callit
Correlation																						
Capacitance	+8 (200)	X	X	X	X	X	X	1	1	1	1	1	1	1	X	?	?	X	?	?	X	
Ultrasonic	+0.5 (12)	Х	Х	Х	Х	Х	х	?	1	1	1	1	1	1	х	?	X	X	X	?	х	No data available No data available

SD = Some designs

Technology

SELECCIÓN DE CAUDALÍMETROS Norma BS-7405

Requerimientos de la aplicación

1

Application

KEY									
Best for this application									
OK with some exceptions	S	S	Liquids		Liquids		vice	Pipes	<u>=</u>
OK for some applications but check first	or Ga	Liquic	ive Li	Liquids		50	le Sei	illed	Shann
X Do not use in this service	Vapor or Gas	Clean Liquids	Corrosive	Dirty L	Viscous	Slurries	Hi-Temp Service	Semi-Filled Pipes	Open Channel
Magnetic	×	•	•	•	Θ	•	•	•	0
Thermal Mass	•	•	•	•	•	0	0	×	X
Ultrasonic - Transit Time	•	•	•	0	•	×	×	×	0
Ultrasonic - Doppler	×	×	•	•	•	0	×	×	X
Vortex Shedding	•	•	Φ	Φ	•	×	•	×	X
Turbine	•	•	•	•	Θ	X	Φ	×	0
Variable Area	•	•	Φ	Φ	Φ	X	Φ	×	×
Postive Displacement	•	•	0	X	•	X	0	×	×
Differential Pressure	•	•	0	0	0	0	0	×	×

Requerimientos de la aplicación

1

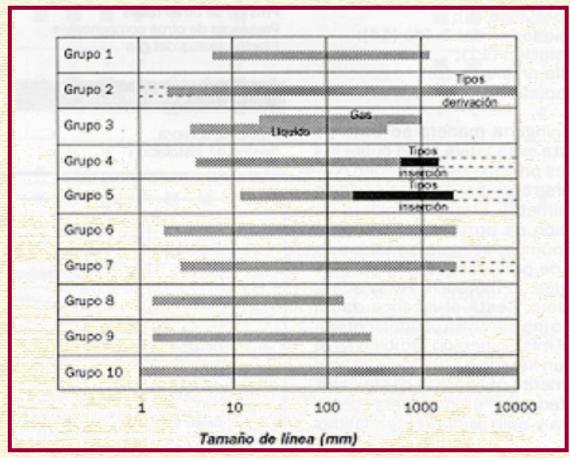
			Fluid	Туре							
Technology	Clean	Dirty	Viscous				Pressure	Мах Тетр	Max Press	Pipe Diam's	Sizes
	Liquid	Liquid	Liquid	Slurry	Gas	Steam	Loss	F	psi	Req'd	inches
Magnetic							None	450	750	10	.1 to 96
Coriolis							Medium	500	1500	None	.1 to 8
Ultrasonic							None	350	500 or	5 to 30	1+
									pipe rat'g		
Vortex							Low	450	1500	10 to 20	2 to 12
Turbine							Low	500	3000	10 to 20	.25 to 24
Diff. Pressure							Medium	750	3000	10 to 30	Any
Pos Displacement							High	450	1500	None	.25 to 16
Variable Area							Low	600	1500	None	1/8 to 4
Open Channel							Low	200	N/A	None to 20	2+
Thermal							Low	500	1500	None to 30	1/8+

Intended Service Possibly Applicable Not Applicable

Requerimientos de la aplicación

1

	2200	Mater	ial Pha	se		Friends.	Ferel					
Flowmeter		Viscous Liquid		Gas	Solid	Turndown	Pressure Loss	Upstream Straight Pipe Dia (Guide)	Downstream Straight Pipe Dia (Guide)	Typical Accruacy (% FSC)	Relative Cost	Notes
Coriolis	Υ	Υ	?	Υ	?	20:1	Н	None	None	0.5	М	U' Tube are better than 'S' tube models but are however more expensive.
Dall Tube	Υ	7	?	Y	N	3:1	М-Н	15	5	1	Н	Similar to venturi but cheaper to manufacture.
Magnetic	Y	Y	Y	N	N	10:1	N	5	3	2	H	Must be conductive
Orifice Plate	Υ	?	?	Υ	N	3:1	н	20	5	1 to 2	L	Limitation of accuracy is due to differential pressure sensing element.
Pitot Tube	Υ	N	?	Y	N	3:1	М	30	5	1 to 5	L	Pitot tube only provides point measurement of fluid flow in pipe.
Positive Displacement	Υ	Υ	N	Y	N	10:1	н	None	None	1		On dirty duty filter required. Turndown may be higher on Gas service.
Solids Flowmeter	N	N	N	N	Y	20:1	NA.	NA.	NA	2	H	
Target Meter	Y	Y	?	Y	N	4:1	Н	20	5	1 to 5	L	
Thermal Mass Flow	Y	?	?	Y	N	20:1	M-H	5	3	1	M	On dirty duty filter required.
Turbine	Υ	?	N	2	N	10:1	Н	15	- 5	0.25		Maitnenance costs high due to need to overhaul.
Ultrasonic	Υ	?	Y	2	?	10:1	N	15	5	2 to 3	М	Cost depends on size? Clamp or meters difficult to get good / clean pipe connection.
Wariable Area	Υ	?	7	Υ	N	5:1	М	None	None	5 to 10	L	Generally these instruments provide local indication only.
Venturi	Υ	7	?	Y	N	3:1	М	15	5	0.5 to 1	Н	Limitation of accuracy is due to differential pressure sensing element.
Vortex	Y	N	N	Y	N	10:1	H	20	5	1	M	
Wier / Flumes	Y	?	?	N	N.	100:1	M	See Link	See Link	2-5%	. н.	


Y-Yes N-No ?-Sometimes H-High M-Medium

L-Low

N-None

Requerimientos de la aplicación

Requerimientos de la aplicación

Tabla III: Restricciones impuestas por las propiedades del fluido

Grupo	Tipo	Presión máxima (Bar)	Rango de Temp. (°C)	N° de Re mínimo	Gas (G) o Líquido (L)	Dos o má fases
1	Orificio	400	< +650	3 10 ⁴	LG	P
	Venturi	400	<+650	10 ⁵	LG	P
	Boquilla	400	<+650	2 10 ⁴	LG	N
2	Area variable	700	-80 a +400	Sin datos	LG	N
	De blanco (Target)	100	-40 a +120	3 10 ⁴	LG	S
	Pitot Promediante	400	<+540	10 ⁴	LG	N
	Boquilla sónica	400	<+650	2.5 10 ⁴	G	N
3	Paleta deslizante	100	-30 a +200	10 ³	L	N
	Ruedas ovaladas	100	-15 a +290	10 ²	L	N
	Pistón giratorio	170	-40 a +170	10 ²	L	N
	Diafragma para gases	200	-30 a +200	$2.5 \ 10^2$	G	N
	Giratorio de gas	100	-40 a +150	10 ³	G	N
4	Turbina	3500	-268 a +530	10 ⁴	LG	N
	Pelton	3500	-225 a +530	10 ⁴	LG	N
	Medidor mecánico	600	-25 a +200	10 ⁴	LG	N
	Turbina de inserción	70	-50 a +430	10 ⁴	LG	N
5	Vórtex	260	-200 a +430	2 10 ⁴	LG	P
	Tipo Coanda	100	-40 a +110	Sin datos	LG	N
	Vórtex de inserción	70	-30 a +150	5 10 ³	LG	N
6	Electromagnético	300	-60 a +200	Sin límites	L	S/P
	Electromagnético de inserción	20	+5 a +25	Sin datos	L	N
7	Doppler	*	-20 a +110	5 10 ³	L	S
	Tiempo de Tránsito	200	-200 a +250	5 10 ³	LG	N/P
8	Coriolis	390	-240 a +400	10 ²	L	P
	Rotor de torsión	400	-240 a +350	10 ⁴	L	N
9	Anemómetro	20	-200 A + 400	Sin datos	LG	N
	De masa térmica	300	0 a +100	Sin datos	LG	N
10	Trazador	Sin datos	Sin datos	Sin límites	LG	P
	Láser	*	Sin datos	Sin límites	LG	N

N. No adecuado

* Depende de la pared de la cañería

P. Posible

S. Adecuado

Requerimientos de la aplicación

SELECCIÓN DE CAUDALÍMETROS Norma BS-7405

Tabla IV: Restricciones impuestas por la instalación

Grupo	Tipo	Orientación	Dir.	Tramos aguas arriba	Tramos aguas abajo	Filtro	Diámetros de cañería (mm)
1	Orificio	H,VU,VD,I	U,B	5D/80D	2D/8D	N	6 a 2600
	Venturi	H,VU,VD,I	U	0.5D/29.5D	4D	N	> 6
	Boquilla	H,VU,VD,I	U	5D/80D		7-3-4	
2	Area variable	VU	U	0D	0D	P	2 a 600
	De blanco (Target)	H,VU,VD,I	U	6D/20D	3.5D/4.5D	N	12 a 100
	Pitot Promediante	H,VU,VD,I	U,B	2D/25D	2D/4D	P	> 25
	Boquilla sónica	H,VU,VD,I	U	> 5D	> 0D	N	≥ 5
3	Paleta deslizante	H,VU,VD,I	U	0D	0D	R	25 a 250
	Ruedas ovaladas	Н	U	0D	0D	R	4 a 400
	Pistón giratorio	H,VU,VD,I	U	0D	0D	R	6 a 1000
	Diafragma para gases	Н	U	0D	0D	N	20 a 100
	Giratorio de gas	H,VU,VD,I	U.B	0D/10D	0D/5D	R	50 a 400
4	Turbina	H,VU,VD,I	U,B	5D/20D	3D/10D	P	5 a 600
	Pelton	H,VU,VD,I	U	5D	5D	R	4 a 20
	Medidor mecánico	H,VU,VD,I	U	3D/10D	1D/5D	R	12 a 1800
	Turbina de inserción	H,VU,VD,I	U,B	10D/80D	5D/10D	P	> 75
5	Vórtex	H,VU,VD,I	U	1D/40D	5D	N	12 a 200
	Tipo Coanda	H,VU,VD,I	U	3D	1D	N	12 a 400
	Vórtex de inserción	H,VU,VD,I	U	20D	5D	N	> 200
6	Electromagnético	H,VU,VD,I	U,B	0D/10D	0D/5D	N	2 a 3000
	Electromagnético de inserción	H,VU,VD,I	U.B	25D	5D	N	> 100
7	Doppler	H,VU,VD,I	U,B	10D	5D	N	> 25
	Tiempo de Tránsito	H,VU,VD,I	U,B	0D/50D	2D/5D	N	>4
8	Coriolis	H,VU,VD,I	U	0D	0D	N	6 a 150
	Rotor de torsión	H,VU,VD,I	U	20D	5D	N	6 a 150
9	Anemómetro	H,VU,VD,I	U.B	10D/40D	Sin datos	R	> 25
	De masa térmica	H,VU,VD,I	U	Sin datos	Sin datos	R	2 a 300
10	Trazador	H,VU,VD,I	U.B	#	#	N	Ilimitado
	Láser	H,VU,VD,I	U.B	0D	0D	P	

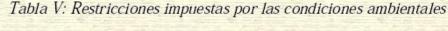
H. Flujo horizontal

VU. Flujo vertical hacia arriba

VD. Flujo vertical hacia abajo

I. Flujo inclinado

Longitud de mezcla


U. Flujo unidireccional

B Flujo bidireccional

R. Recomendable

N. No necesario

P. Posible

Requerimientos de la aplicación

Grupo	Тіро	Efecto de la Temperatura	Versión Intrínsec. segura	Versión a prueba de agua y explosión	Efecto de campos elec y radio frec, inducidos ⁽¹⁾
1	Orificio	4	#	#	1/2
	Venturi	3	#	#	1/2
	Boquilla	3	#	#	1/2
2	Area variable	3	A	A	1
	De blanco (Target)	3	NA	A	3
	Pitot Promediante	3	#	#	2
	Boquilla sónica	3	A	NA	1/2
3	Paleta deslizante	4	A	A	1/3
	Ruedas ovaladas	4	A	A	1/3
	Pistón giratorio	4	A	A	1/3
	Diafragma para gases	4	A	NA	1/3
	Giratorio de gas	4	A	NA	1/3
4	Turbina	3	A	A	4
	Pelton	3	A	A	4
	Medidor mecánico	3	A	A	1
	Turbina de inserción	3	A	A	4
5	Vórtex	2	A	A	4
	Tipo Coanda	2	A	A	3
	Vórtex de inserción	1	A	N	3
6	Electromagnético	1	A	A	3
	Electromagnético de inserción	1	A	N	3
7	Doppler	3/4	A	A	4
	Tiempo de Tránsito	3/4	NA	A	4
8	Coriolis	1	A	A/NA	4
	Rotor de torsión	2	Sin datos	Sin datos	4
9	Anemómetro	3	NA	NA	2
	De masa térmica	4	A	A	2
10	Trazador	1	N	N	1
	Láser	1	NA	NA	4

R. Recomendable

N. No necesario

Depende de la medición (1) 1 es reducido, 5 es alto A. Disponible

NA. No disponible

Requerimientos de performance

2

Los requerimientos de performance reflejan la calidad de la medición y las necesidades para el control del sistema. Se puede consultar la Tablas de fabricantes para descartar los elementos primarios que no cumplan con las exigencias.

La propia norma ofrece una tabla, algo desactualizada al día de hoy, que puede complementarse con tablas de fabricantes para poder determinar qué dispositivos cubren los requisitos de performance

2

Requerimientos de performance

Tabla VI: Factores de performance que inciden en la selección de caudalímetros

Grupo	Тіро	Linealidad	Repetibi- lidad	Rangea- bility	Δp con caudal máx. ⁽¹⁾	Pará- metro med.	Tiempo de resp.
1	Orificio	#	#	3 o 4:1	3/4	R	#
	Venturi	#	#	3 o 4:1	2	R	#
	Boquilla	#	#	3 o 4:1	2/3	R	#
2	Area variable	±1% a ±5% FS	±0.5% a ±1% FS	10:1	3	R	Sin datos
	De blanco (Target)	NS	NS	3:1	3	R	NS
	Pitot Promediante	#	±0.05% a ±0.2% R	#	1/2	V _m	#
	Boquilla sónica	±0.25%	±0.1%	100:1	3/4	R	NS
3	Paleta deslizante	±0.1% a ±0.3% R	±0.01% a ±0.05% R	10 a 20:1	4/5	Т	> 0.5 s
	Ruedas ovaladas	±0.25% R	±0.05% a ±0.1% R		4	Т	> 0.5 s
	Pistón giratorio	±0.5% a ±1% R	±0.2% R	10 a 250:1	4/5	T	> 0.5 s
	Diafragma para gases	Sin datos	Sin datos	100:1	2	T	> 0.5 s
	Giratorio de gas	±1%	±0.2 %	25:1	2	T	> 0.5 s
4	Turbina	±0.15% a ±1% R	±0.02% a ±0.5% R	5 a 10:1	3	R	5 ms a 25 ms
	Pelton	±0.25% a ±0.5% R	±0.1% a ±0.25% R	4 a 10:1	4	R	5 ms a 25 ms
	Medidor mecánico	Sin datos	±1% FS	10 a 280:1	3	R	50 ms
	Turbina de inserción	±0.25% a ±5% R	±0.1% a ±2% R	10 a 40:1	1/2	V _p	5 ms a 25 ms
			10.40/				

R Caudal

T Caudal volumétrico v_m. Velocidad media v_p. Velocidad puntual

%R Porcentaje de caudal %FS porcentaje de plena escala NS. No especificado

Depende de la medición de Δp dif.

(1) 1 es baja, 5 es alta

2

Requerimientos de performance

Tabla VI: Factores de performance que inciden en la selección de caudalímetros

Grupo	Tipo	Linealidad	Repetibi- lidad	Rangea- bility	Δp con caudal máx. ⁽¹⁾	Pará- metro med.	Tiempo de resp.
5	Vórtex	±1% R	±0.1% a ±1% R	4 a 40:1	3	R	0.5 s min.
	Tipo Coanda	< ±2% R	NS	10 a 30:1	3	R	NS
	Vórtex de inserción	±2%	±0.1% R	15 a 30:1	1	V_p	5 ms
6	Electromagnético	±0.5% a ±1% R	±0.1% R a ±0.2% FS	10 a 100:1	1	R	> 0.2 s
	Electromagnético de inserción	±2.5% a ±4% R	±0.1% R	10:1	1 4	V_p	NS
7	Doppler	Sin datos	±0.2% FS	5 a 25:1	1	v _m , R	
	Tiempo de Tránsito	±0.1%R a ±1%R	±0.2% R a ±1% FS	10 a 300:1	1	R	0.02 s a 120 s
8	Coriolis	NS	±0.1% a ±0.25% R	10 a 100:1	2/5	R	0.1 s a 3600 s
	Rotor de torsión	Sin datos	Sin datos	10 a 20:1	3/4	R	50 ms
9	Anemómetro	Sin datos	±0.2% FS	10 a 40:1	2	Vp	Sin datos
	De masa térmica	±0.5% a ±2% FS	±0.2% FS a ±1% R	10 a 500:1	2	R	0.12 s a 7 s
10	Trazador	Sin datos	Sin datos	hasta 1000:1	1	$V_{\rm m}$	Sin datos
	Láser	Sin datos	±0.5% R	hasta 2500:1	1	v_p	Sin datos

R Caudal

T Caudal volumétrico v_m. Velocidad media v_p. Velocidad puntual

%R Porcentaje de caudal %FS porcentaje de plena escala NS. No especificado

Depende de la medición de Δp dif.

(1) 1 es baja, 5 es alta

Requerimientos de performance

Attribute	Variable-area	Coriolis	Gas mass- flow	Differential- Pressure	Turbine	Oval Gear
Clean gases	yes	yes	yes	yes	yes	
Clean Liquids	yes	yes	() - E	yes	yes	yes
Viscous Liquids	yes (special calibration)	yes	1	no	yes (special calibration)	yes, >10 centistokes (cst)
Corrosive Liquids	yes	yes	-	no	yes	yes
Accuracy, ±	2-4% full scale	0.05-0.15% of reading	1.5% full scale	2-3% full- scale	0.25-1% of reading	0.1-0.5% of reading
Repeatability, ±	0.25% full scale	0.05-0.10% of reading	0.5% full scale	1% full- scale	0.1% of reading	0.1% of reading
Max pressure, psi	200 and up	900 and up	500 and up	100	5,000 and up	4,000 and up
Max temp., °F	250 and up	250 and up	150 and up	122	300 and up	175 and up
Pressure drop	medium	low	low	medium	medium	medium
Turndown ratio	10:1	100:1	50:1	20:1	10:1	25:1
Average cost*	\$200-600	\$2,500- 5,000	\$600- 1,000	\$500-800	\$600-1,000	\$600-1,200

^{*}Cost values can vary guite a bit depending on process temperature and pressures, accuracy required, and approvals needed.

	SELECCIÓN DE	Flow Meter	Recommended Service	Turndown	Typical Pressure Loss	Accuracy FS = Full Scale	Required Upstream pipe, diameters	Effects from changing viscosity?
	CAUDALÍMETROS	<u>Turbine</u>	Clean, viscous liquids	20 to 1	High	+/- 0.25% of rate	5 to 10	High
trial	Norma BS-7405	Positive Displacement	Clean, viscous liquids	10 to 1	High	+/- 0.5% of rate	None	High
Curso: Instrumentación Industrial de Procesos amento de Ingeniería de Procesos y gestión Industrial		Electromagnetic (Mag-Meter)	Clean, dirty, viscous, conductive liquids and slurries	40 to 1	None	+/- 0.5% of rate	5	None
al de Pl		Variable Area (VA, Rota- meter)	Clean, dirty, viscous liquids	10 to 1	Medium	+/- 1 to 10% FS	None	Medium
Industrial Procesos		Thermal Mass Flow (TMF)	Clean dirty viscous liquids some slurries	10 to 1	Low	+/- 1% FS	None	None
ación l ría de F		Coriolis Mass Meter	Clean, dirty. viscous liquids, some slurries	10 to 1	Low	+/- 0.5% of rate	None	None
ument		Orifice Plate	Clean, dirty, liquids some slurries	4 to 1	Some	+/- 2 to 4% FS	10 to 20	High
Instr de I	9	Pitot tube	Clean liquids	3 to 1	Very low	+/- 3 to 5% FS	20 to 30	Low
Curso: Instrumentación Departamento de Ingeniería de		Ultrasonic (Doppler)	Dirty, viscous, liquids and slurries	10 to 1	None	+/- 5% FS	5 to 30	None
Depart	Requerimientos de performance	Ultrasonic (Transit Time)	Clean, viscous, liquids some dirty liquids (depending on brand)	40 to 1	None	+/- 1 to 3% FS	10	None
		Venturi	Some slurries but clean, dirty and liquids with high viscosity	4 to 1	A little	+/- 1% FS	5 to 18	High
		Vortex	Clean, dirty liquids	10 to 1	Medium	+/- 1% of rate	10 to 20	Medium

Requerimientos

de costo

El costo de compra e instalación (inversión) son fáciles de determinar. Los costos de mantenimiento y operacionales son más difíciles de definir y pueden tener mucha influencia

Una vez descartados los dispositivos que no satisfacen los requerimientos de la aplicación y de performance, las alternativas restantes se las evalúa económicamente teniendo en cuenta la inversión inicial, los costos de mantenimiento y operacionales, la vida útil y la tasa de corte de la empresa.

La norma BS-7405 proporciona tablas indicativas.

Al final del proceso se debería obtener una lista con los tipos de medidores y un orden de preferencias.

SELECCIÓN DE CAUDALÍMETROS Norma B5-7405 Tabla VI: Factores económicos que inciden en la selección de caudalímetros

Requerimientos de costo

Grupo	Tipo	Costo de Instalación	Costo de Calibración	Costo de Operación	Costo de Mantenim.	Costo de Repuestos
1	Orificio	2/4	1	3	2	I
	Venturi	4	1/4	2	3	3
	Boquilla	3	3	2	3	2
2	Area variable	1/3	2	2	1	1
	De blanco (Target)	3	3	2	3	3
	Pitot Promediante	2	3	2	2	2
	Boquilla sónica	2	1	3/4	2	1
3	Paleta deslizante	3	5	4	4	5
	Ruedas ovaladas	3	4	4	4	5
	Pistón giratorio	3	3	3	3	4
	Diafragma para gases	3	3	1	2	2
	Giratorio de gas	3	4	3	3	3
4	Turbina	3	4	3	4	4
	Pelton	4	3	3	4	3
	Medidor mecánico	3	2	2	3	3
	Turbina de inserción	2	3	2	2	3
5	Vórtex	3	3	3	3	3
	Tipo Coanda	3	4	3	3	3
	Vórtex de inserción	2	3	2	3	3
6	Electromagnético	3	3		3	3
	Electromagnético de inserción	2	3	2	3	2
7	Doppler	1/3	7-1	1	3	2
	Tiempo de Tránsito	1/3	.3	1	3	2
8	Coriolis	3	4	4	3	3
	Rotor de torsión	3	3	3	3	3
9	Anemómetro	3	2	1	3	3
	De masa térmica	3	4	2	4	3
10	Trazador	2		4	2	4
	Laser	5		4	5	5

5 es alto

1 es bajo

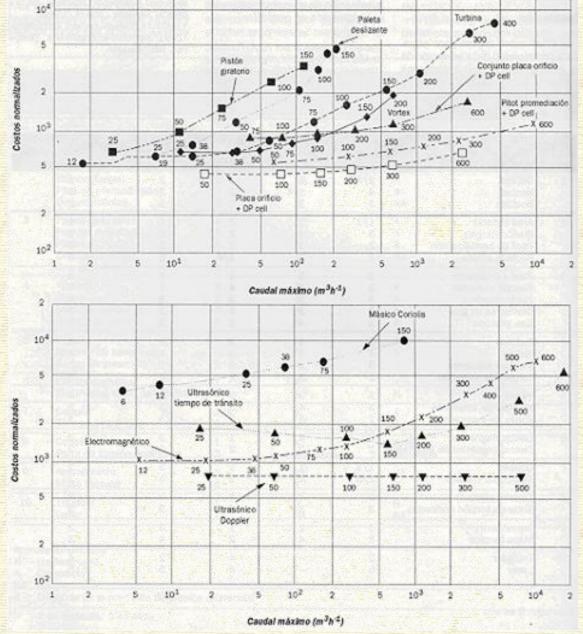


Figura 3: Precios relativos de distintos caudalimetros (los números indican el tamaño de cañería en milímetros)

3

Requerimientos de costo

Los costos operativos son los más difíciles de determinar. Normalmente están relacionados con el gasto de energía. Hay publicaciones que permiten por ejemplo estimar la pérdida de carga en la línea asociable al costo de bombeo.

Flowmeter	Liquid	Gas (vapor)	Li	quid/gas (vapor); mass flow
Venturi: 15 exit cone		$h = (0.436 - 0.86\beta + 0.59\beta^2) \Delta$	ΔP	
7 exit cone	-	$h = (0.218 - 0.42\beta + 0.38\beta^2)\Delta$		
Universal venturi tube		$h = (0.065 + 0.092\beta - 0.167\beta^2)$	')ΔΡ	
Lo-Loss® tube		$h = (0.151 - 0.304\beta + 0.182\beta^2$)ΔΡ	
Nozzle		$h = (1 + 0.014\beta - 2.06\beta^2 + 1.1)$	8β ³)ΔP	
Orifice		$h = (1 - 0.24\beta - 0.52\beta^2 - 0.16)$	β^3) ΔP	
Annubar Types 73, 75, 76		$h = \frac{1.25}{D} \Delta P$		-
Types 85, 86		$h = \frac{3.2}{D} \Delta P$		-
Pitot		$h = \frac{0.6}{D} \Delta P$		-
Target		$h = 0.000467 \frac{\rho v^2}{(1 - \beta_T)^{2.75}}$		—
			h = -	$\frac{1}{(1-\beta_T)^{2.75}} \left(\frac{Q_{pph}}{928 D^2} \right)$
Turbine $h = 0.0$	00577 ρv ²	$h = 0.0129 \rho v^2$	Liquid:	$h = \frac{1}{\rho} \left(\frac{Q_{pph}}{259 D^2} \right)$
			Gas:	$h = \frac{1}{\rho} \left(\frac{Q_{\rho\rho h}}{173 D^2} \right)$
Vortex	→	$h = 0.00554 \rho v^2$		-
				$h = \frac{1}{a} \left(\frac{Q_{pph}}{264 \Omega^2} \right)$

SELECCIÓN DE CAUDALÍMETROS Norma BS-7405

3

Requerimientos de costo

3

Requerimientos de costo

El costo de mantenimento debe contemplar todo lo que implica mantener operativo el instrumento de medición.

Se debe incluir los elementos que deben cambiarse periódicamente (juntas, conectores, etc.) y la mano de obra adicional.

