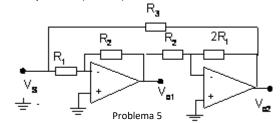

Tema: Circuitos con amplificador Operacional.

- **1-** Calcular la ganancia de tensión Eo/Es en el circuito de la figura 1
- **2.-** En el circuito de la figura 2, calcule: a) La ganancia de tensión V_o/V_s , b) Los valores de las resistencias para que las ganancia de tensión valga entre 50 y 100, cuando la resistencia R_4 varia entre $5K\Omega$ y $10~K\Omega$. Adopte R_2/R_1 = 10


3.- Siendo R_1 = 1K Ω , R_2 =27K Ω , E_1 =6V, V_{CC} =12V y $v_S(t)$ = 20 cos (2 π 5000t)[mV], para el circuito de la figura: a) Grafique tensión de entrada y de salida en función del tiempo, indicando los valores. b) Determine la máxima tensión de entrada para que la salida no presente distorsión. c) Calcule la impedancia de entrada Z_i que ve el generador.

I) $R_3=R_1$; II) $R_3=\infty$

- 4.- Determine para el circuito de la figura:
- a) La conductancia V_o/I_S b) La impedancia de entrada Z_i que ve el generador I_S .
- 5.- En el circuito de la figura, determine:
- a) La ganancia de tensión saliendo por V₀₁ (V₀₁/V_s)
- b) La ganancia de tensión saliendo por V₀₂ (V₀₂/V_S)
- c) La impedancia de entrada siendo:

Bibliografía

- -Rashid, Muhammad: "Circuitos Microelectrónicos. Análisis y diseño" Thomson Learnig
- -Floyd, Thomas L: "Dispositivos Electrónicos", 8° ed. Pearson Education; Mexico 2008
- -Sedra, A. S. y Smith K. C. "Circuitos Microelectrónicos" Mc Graw Hill
- -Apuntes de clase.
- -Página de Cátedra http://catedras.facet.unt.edu.ar/eindi