ELECTRÓNICA I COD E17

INTEGRANTES DE LA CÁTEDRA

- Ing. Aída OLMOS- Prof. Titular
- Ing. Carlos IVAN- Prof. Adjunto
- Ing. Martín JUÁREZ- Jefe de Trabajos Prácticos
- Ing. Eugenio NANNI- Jefe de Trabajos Prácticos
- Ing. Mariano FAGRE- Auxiliar Graduado
- Sr. CASTILLO DELACROIX, Lucas Ezequiel- Ayudante Estudiantil
- Sr. GARCIA, Luis Gabriel Ayudante Estudiantil
- Sr. FERNANDEZ, Diego Gabriel Ayudante Estudiantil

HORARIOS

CLASES TEÓRICAS:

Martes de 14:15 a 17:00 Hs - Aula DEEC 3 (1301)

CLASES PRÁCTICAS

Viernes de 10 a 12 Hs -Aula DEEC 3 (1301)

LABORATORIOS

A consensuar

-CLASES DE CONSULTA:

a consensuar

PARA CURSAR LA ASIGNATURA

- a) Inscripción formal: Estar inscripto en la materia conforme a las disposiciones del reglamento de la carrera. (Se refiere a inscripción en Dirección Alumnos)
- b) Inscripción interna: Se deben inscribirse en página de la cátedra

https://catedras.facet.unt.edu.ar/e1/

Nota: Esta cátedra NO ACEPTA ALUMNOS CONDICIONALES

DE LA REGULARIZACIÓN DE LA ASIGNATURA

Para regularizar la asignatura es necesario reunir los siguientes requisitos:

- a) Estar inscripto en la materia conforme a las disposiciones del reglamento de la carrera.
- b) Asistir al 80% de los trabajos prácticos (laboratorios y teóricos prácticos) de la asignatura.
- c) Presentar y aprobar el 100% de los trabajos de Laboratorio.
- d) Aprobar 3 (tres) evaluaciones parciales

SOBRE LOS TRABAJOS PRÁCTICOS

o Trabajos Prácticos de Problemas

- a) Se debe cumplir con el 80% de la asistencia a los mismos
- b) Deben ser resueltos en forma individual.
- c) En la fecha prevista por la cátedra se debe presentar la carpeta completa, la que debe incluir estos trabajos prácticos.

o Trabajos Prácticos de Laboratorio

- a) Las prácticas de laboratorio se desarrollarán en el Laboratorio Docente de Electrónica en los horarios convenidos con los auxiliares.
- b) Los grupos de trabajo estarán integrados como máximo por 3 integrantes. Los informes de laboratorio pueden ser presentado en forma grupal (uno por grupo de trabajo).
- c) Para aprobar las prácticas de Laboratorio se debe cumplir con el 80% de la asistencia y aprobar el 75% de los mismos.
- d) Para aprobar el TP de Laboratorio, se deberá aprobar una prueba breve.

SOBRE LAS EVALUACIONES

- a) Se tomarán 3 (tres) Evaluaciones parciales, las que se aprueban con el 40%.
- b) Las Evaluaciones parciales se rinden a libro cerrado.

Sobre las recuperaciones

- a) Tendrán derecho a recuperar, aquellos alumnos que hayan aprobado, dos (2) Evaluaciones parciales y tengan el Laboratorio Aprobado.
- b) La recuperación será parcial, en fecha prevista por la Cátedra. Se recupera exclusivamente la evaluación desaprobada.

APROBACIÓN DE LA ASIGNATURA

Para aprobar la asignatura es necesario regularizar. Luego de cumplido este requisito, el alumno puede **optar** por alguna de las siguientes opciones:

- a) Aprobar un Examen Final en fechas previstas en el Calendario Académico de la la FaCET
- b) Aprobar un Evaluativo Integral oral o escrito en las fechas previstas por la cátedra y realizar un Proyecto integrador bajo las condiciones listadas en el punto 4.

Nota:

Los alumnos que tengan aprobadas las 3 evaluaciones y su promedio sea mayor o igual a 60/100, no rinden evaluación integral

CONOCIMIENTOS PREVIOS NECESARIOS

Para cursar exitosamente esta asignatura, es imprescindible que los alumnos manejen los siguientes temas:

- * Ley de Ohm.
- * Leyes de Kirchhoff.
- * Unidades de medición de los parámetros eléctricos.
- * Impedancias. Módulo, fase (manejo de números complejos)
- * Reactancias, inductivas y capacitivas.
- * Divisores de tensión y de corriente.
- * Teoremas de: Superposición, Thévenin, Norton.

Cronograma de clases

1º clase Teórica: Martes 13/08/19- 14:15 hs. Aula DEEC3

1º Clase práctica: Viernes 16/08/19-10:00 hs

- > Charla sobre seguridad en laboratorio
- Armado de grupos de laboratorio
- Elección de comisión de laboratorio.

1º Clase de laboratorio: Semana del 26 de agosto

Fin de clases: Semana del 26 de Junio

Cronograma tentativo de Evaluaciones

- 1° Evaluativo Parcial: Viernes 20/9-13 hs-
- 2° Evaluativo Parcial: Viernes 25/10 -13 hs
- 3° Evaluativo Parcial: Viernes 22/11- 13 hs
- Recuperación: Lunes 2/12- 10 hs Aulas DEEC
- 1° Evaluativo Integral: Lunes 2/12- 10 hs Aulas del DEEC
- 2° Evaluativo Integral: Lunes 8/12- 10 hs Aulas del DEEC
- Reunión para asignar Tema de proyecto: lunes 16/12–12 Hs. - Lab. Doc. Electrónica
- Presentación del Proyecto: Semana del 9/3/2020, en horario sorteado

ELECTRONICA I - CUAT 2-2019

	Lun	Mar	Mie	Jue	Vie	N°		TEORIA	TRABAJOS PRACTICOS	TP LABORATORIO
AGOSTO	12-ago	13-ago	14-ago	15-ago	16-ago	1		Presentación+ Tema 1+ Tema 2	Charla de Seguridad + Armado de grupos	
	19-ago	20-ago	21-ago	22-ago	23-ago	2		Tema 3: Amplificadores Operacionales	28/8- TPP №1: OPERACIONALES	TPL №1: Instrumentos, armado de cables, Protoboards
	26-ago	27-ago	28-ago	29-ago	30-ago	3		Tema 3: Amplificadores Operacionales	4/9 - TPP №1: OPERACIONALES	TPL №2: Operacionales
SEPTIEMBRE	2-sep	3-sep	4-sep	5-sep	6-sep	4		TEMA 4: Filtros Activos de 1er orden	TPP Nº2: OPERACIONALES - FILTROS	TPL №2: Operacionales
	9-sep	10-sep	11-sep	12-sep	13-sep	5		TEMA 4: Filtros Activos de 1er orden	FILIROS	TPL №2: Operacionales - Filtos
	16-sep	17-sep	18-sep	19-sep	20-sep	6	20/9 PARCIAL 1	TEMA 5: Diodo	TPP №3 - Diodos- Circuitos con diodos	TPL №3: Circuitos con Diodos Ensayo de Trafo
	23-sep	24-sep	25-sep	26-sep	27-sep	7		TEMA 5: Diodo	TPP №4 Fuente RC y LC	TPL №4: Diseño de Fuentes RC
OCTUBRA	30-sep	1-oct	2-oct	3-oct	4-oct	8		TEMA 6 – Aplicaciones de los diodos	Feriado	
	7-oct	8-oct	9-oct	10-oct	11-oct	9		TEMA 6 – Aplicaciones de los diodos	TPP №4 Fuente RC y LC	TPL №4: Diseño de Fuentes RC
	14-oct	15-oct	16-oct	17-oct	18-oct	10		TEMA 7 – TBJ	TPP №5: TBJ Polarización	
	21-oct	22-oct	23-oct	24-oct	25-oct	11	25/10 PARCIAL 2	TEMA 7 – TBJ	TPP №5: TBJ Polarización+ Llave	TPL №5: TBJ Polarización
NOVIEMBRE	28-oct	29-oct	30-oct	31-oct	1-nov	12		TEMA 7 – TBJ	TPP №6: TBJ alterna	TPL №5: TBJ Polarización +Llave
	4-nov	5-nov	6-nov	7-nov	8-nov	13		TEMA 8 – TBJ: Amplificadores especiales	TPP №6: TBJ alterna	TPL №5: TBJ Alterna
	11-nov	12-nov	13-nov	14-nov	15-nov	14		TEMA 8 – TBJ: Amplificadores especiales	TPP №5: TBJ alterna+ Mixtos	TPL №5: TBJ Alterna
	18-nov	19-nov	20-nov	21-nov	22-nov	15	22/11 PARCIAL 3			
	25-nov	26-nov	27-nov	28-nov	29-nov	16				
DICIEMBRE	2-dic	3-dic	4-dic	5-dic	6-dic		2/12REC + 1er INTEGRAI			
	9-dic	10-dic	11-dic	12-dic	13-dic		9/12 2do INTEGRAL			12
	16-dic	17-dic	18-dic	19-dic	20-dic		16/12 Reunion PROYECTO			
	23-dic	24-dic	25-dic	26-dic	27-dic					

PROGRAMA DE LA ASIGNATURA

TEMA 1 - Introducción a la Electrónica

Historia de la electrónica. Sistemas
electrónicos: Diagramas en bloques, sensores,
actuadores. Señales electrónicas: Analógicas,
digitales, espectro de frecuencia.
Especificaciones de los sistemas electrónicos:
Distorsión, frecuencia. Diseño de sistemas
electrónicos: diagramas en bloque y flujo,
diseño de circuitos. Tipo de componentes
pasivos: resistencias, capacitor, inductor.

TEMA 2 - Amplificadores: Conceptos
generales

Conceptos básicos sobre amplificadores:
Modelos. Concepto de ganancias de tensión,
corriente, potencia y Rendimiento. Escalas:
Notación en decibelios. Definición de
impedancia de entrada y de salida. Respuesta
en Frecuencias y Ancho de Banda. Curvas
transferencia: zonas de trabajo, Saturación.
Modelos de Amplificadores ideales y
Amplificadores reales. Amplificadores en
cascada.

TEMA 3 – Amplificadores Operacionales Simbología. Características del AOp ideal. Modelos. Análisis de circuitos con amplificadores operacionales ideales: inversor y no inversor. Aplicaciones de los AOps: Integrador, derivador, sumador, Amplif. Diferencial, Amplificador para instrumentación, Convertidor de impedancias, Convertidor de V/I, I/V. El Amplificador operacional real como ideal. El amplificador operacional en conexión diferencial. Amplificador diferencial: ganancia en modo común y ganancia en modo diferencial.Diseño de circuitos con amplificadores operacionales.

TEMA 4 – Filtros Activos de 1er orden
Filtro PB: Ganancia de tensión, frecuencia
de media potencia, AB. Diagrama de Bode,
trazado de la curva real, punto de 3 db,
cálculo de la atenuación en db/octava y/o
db/década. Filtro PA: ganancia de tensión,
frecuencia de potencia doble, diagrama
asintótico y trazado de la característica real,
pendiente de crecimiento. Filtro pasa banda:
frecuencia de media potencia, diagrama
asintótico. Cálculo. Filtros en cascada: PB,
PA. Ancho de banda del conjunto,
atenuación del sistema.

TEMA 5 – Diodos

El diodo Ideal: operación de diodo y Curvas características I-V , curva transferencia, simbología, funcionamiento. El diodo real: Curvas características, curva transferencia, modelo del diodo. Efecto de la temperatura. Principales datos suministrados en los manuales. Limitaciones. Disipación nominal de potencia. Conexión de diodos en serie y paralelo. Diodos para propósito especial: Zener, ópticos, Schottky, varicap.

TEMA 6 – Aplicaciones de los diodos

Rectificador de MO y OC con carga resistiva y RC. Criterios de diseño, especificación y cálculo de los componentes. Comportamiento frente a variaciones de tensión de alimentación, carga. Rectificador monofásico de MO y OC con filtros LR y LRC. Funcionamiento y características de carga V = f(I), inductancia crítica. Método de diseño, especificación de componentes. Circuito limitador, funcionamiento, característica de transferencia. Cálculo circuito limitador con carga resistiva, resistencia crítica. Circuitos de fijación de nivel: enclavador de picos,corrimiento de nivel variable. Circuitos con amplificadores operacionales y diodos: Rectificador de precisión de media onda y onda completa,

Detectores de precisión, limitadores de tensión. Multiplicadores de tensión (circuitos dobladores y triplicadores de tensión). Convertidores DC / DC

TEMA 7 - TBJ

Simbología y nomenclatura. Curvas características de entrada y de salida en la configuración EC y BC. Modelos. Polarización, circuitos típicos, recta de carga estática, zona de trabajo. Modificación del punto de polarización por variación de los parámetros del transistor. Análisis de funcionamiento y método de cálculo aplicando criterios de diseño. Teoremas de reducción y de substitución. Análisis gráfico del amplificador en la configuración EC, operación lineal y no lineal, limitación de la zona de trabajo, recta de carga dinámica. Modelo incremental del transistor para pequeñas señales y baja frecuencia, en la configuración emisor común con parámetros híbridos. El amplificador con transistor en configuración emisor común, base común y colector común. Cálculo de ganancia de tensión y de corriente, y de impedancias de entrada y de salida. Dimensionamiento de los capacitores del circuito.

TEMA 8 – TBJ- Amplificadores especiales

El amplificador con carga en colector y carga en emisor. Impedancia de entrada, ganancia de tensión y de corriente saliendo por colector y por emisor, impedancia de salida vista desde el colector y el emisor.

El amplificador con transistores en configuración Darlington, Sziklai, Boostrop, Cascode, espejo de corriente. Cálculo de: ganancia de tensión y de corriente, impedancias de entrada y de salida.

El amplificador diferencial con transistores. Cálculo de la ganancia de tensión en sus diferentes modos de excitación, impedancia de entrada.

Amplificadores multietapas: Cálculo de la ganancia de tensión y de corriente, de impedancias de entrada y de salida, cálculo de los capacitores de acoplamiento.

Amplificadores en cascada. Acoplamiento directo, acoplamiento capacitivo.

OBJETIVOS DE ESTA ASIGNATURA

- Contenido: teórico práctico, es científico tecnológico fuertemente formativo
- Sus objetivos generales son que el estudiante adquiera capacidad y destreza para:
 - OUtilizar, identificar, caracterizar y modelar los dispositivos básicos en sus distintas aplicaciones.
 - •Analizar, diseñar, implementar circuitos electrónicos básicos.
 - •Realizar ensayos de laboratorio para identificar y medir los parámetros característicos de circuitos.
 - Lograr competencias en análisis, cálculo, diseño y armado de circuitos, que usan dispositivos electrónicos básicos en una aplicación concreta.
- Al final de esta asignatura, los alumnos estarán en condiciones de analizar y ensayar, simular, calcular, diseñar y armar sistemas electrónicos analógicos de complejidad media.