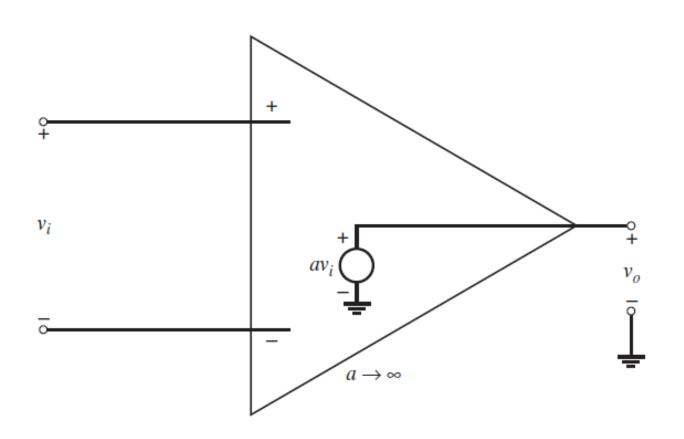
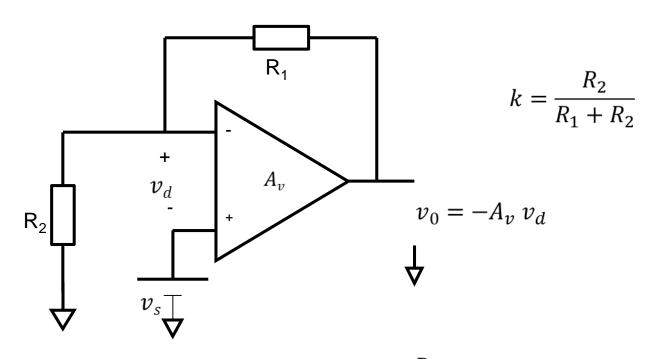


Phase-locked-loop system.



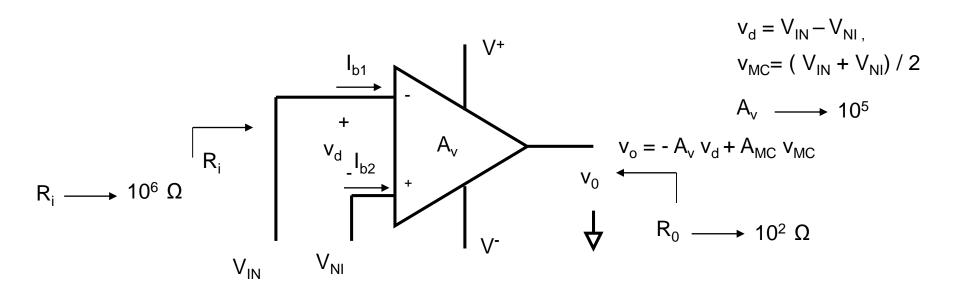
AMPLIFICADOR OPERACIONAL IDEAL



- Sin limite en los valores de las tensiones
- Sin limite de Potencia
- Parámetros independientes de Temperatura
- Como $A_v \rightarrow \infty$ cualquier valor de $v_d \neq 0$ provoca una indeterminación en el valor de v_0

MODELO DEL AMPLIFICADOR OPERACIONAL IDEAL

Amplificador No Inversor

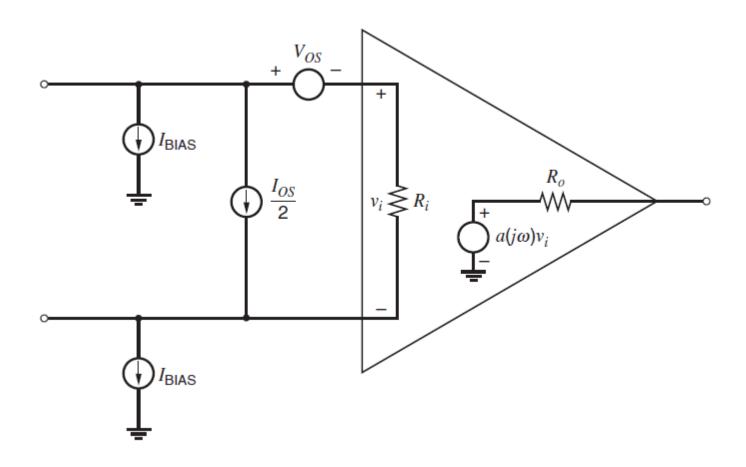


$$v_d = v_{R_2} - v_S \qquad v_0 = -A_v \left(v_{R_2} - v_S \right) \qquad v_{R_2} = \frac{v_0 R_2}{R_1 + R_2} \qquad v_0 = -A_v \frac{v_0 R_2}{R_1 + R_2} + A_v v_S$$

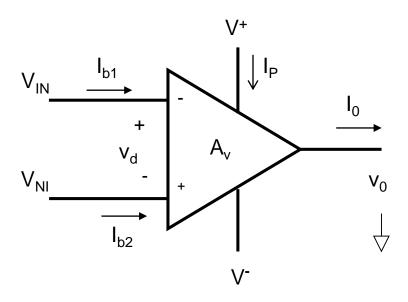
$$v_0 \left(1 + A_v \frac{R_2}{R_1 + R_2} \right) = A_v v_s$$
 $v_0 (1 + A_v k) = A_v v_s$ $\frac{v_0}{v_s} = A_R = \frac{A_v}{(1 + kA_v)}$

$$A_R = \frac{1}{\left(\frac{1}{A_v} + k\right)} \qquad A_v \to \infty \qquad A_R = \frac{1}{k} \qquad A_R = 1 + \frac{R_1}{R_2}$$

AMPLIFICADOR OPERACIONAL REAL


$$V_{IN} = V_{NI} = 0 \rightarrow v_0 \neq 0 \rightarrow V_{io}$$
: Offset de tensión

 $I_{b1} \neq I_{b2} \neq 0 \rightarrow I_{io}$: Offset de corriente


$$AB \longrightarrow 10^6 Hz$$

Modelo del AMPLIFICADOR OPERACIONAL

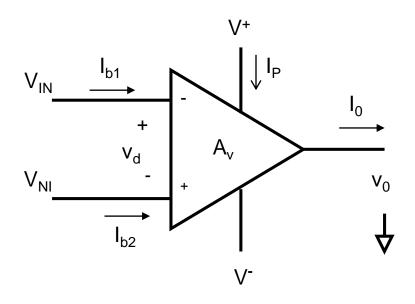
- Off-set de tensión V_{OS}
- Off-set de corriente I_{OS}
- Corriente de polarización de entrada I_{BIAS}
- Resistencia de entrada R_i
- Resistencia de salida R₀

ESPECIFICACIONES DE LOS AMP. OP.

Máximos Absolutos

- V+ y V-
- P_M
- V_{dMAX}
- V_{INMAX} y V_{NIMAX}
- I_{OMAX} o máxima duración del cortocircuito de salida
- T_{jMAX}

MAXIMOS ABSOLUTOS XX741


Absolute Maximum Ratings (Note 1)

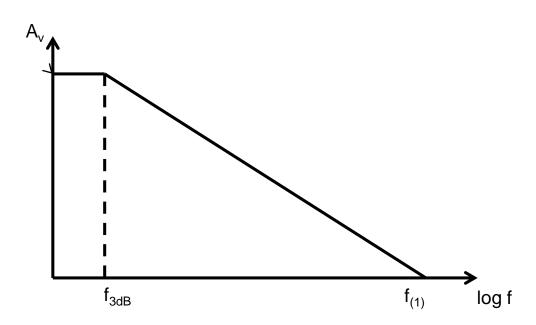
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 6)

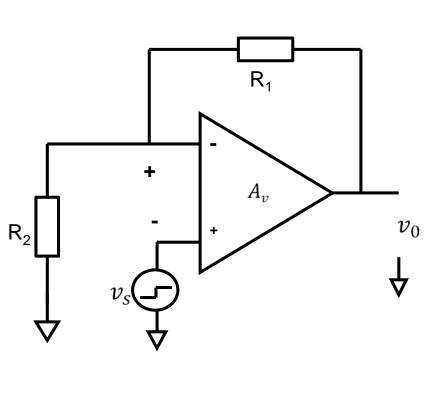
	LM741A	LM741E	LM741	LM741C
Supply Voltage	±22V	±22V	±22V	±18V
Power Dissipation (Note 2)	500 mW	500 mW	500 mW	500 mW
Differential Input Voltage	±30V	±30V	±30V	±30V
Input Voltage (Note 3)	±15V	±15V	±15V	±15V
Output Short Circuit Duration	Continuous	Continuous	Continuous	Continuous
Operating Temperature Range	-55°C to +125°C	0°C to +70°C	-55°C to +125°C	0°C to +70°C
Storage Temperature Range	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C	-65°C to +150°C
Junction Temperature	150°C	100°C	150°C	100°C
Soldering Information				
N-Package (10 seconds)	260°C	260°C	260°C	260°C
J- or H-Package (10 seconds)	300°C	300°C	300°C	300°C
M-Package				
Vapor Phase (60 seconds)	215°C	215°C	215°C	215°C
Infrared (15 seconds)	215°C	215°C	215°C	215°C
See AN-450 "Surface Mounting Me	thods and Their Effect o	n Product Reliability" fo	r other methods of solo	lering
surface mount devices.				
ESD Tolerance (Note 7)	400V	400V	400V	400V

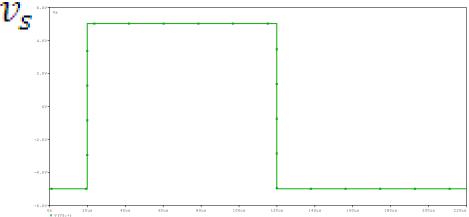
ESPECIFICACIONES DE LOS AMP. OP.

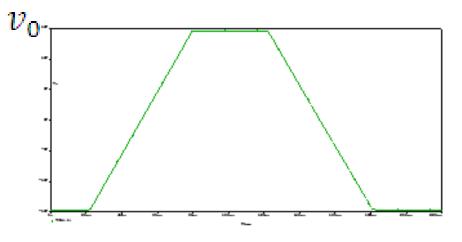
Características Eléctricas


- V_{io}
- $\frac{dV_{io}}{dT}$
- $I_{io} = |I_{b1} I_{b2}|_{max}$
- $\frac{dI_{io}}{dT}$
- I_b
- R_i
- A_v

- R₀
- Max Excursión de v₀
- I_{omax}
- CMRR
- Relación de Rechazo de fuente
- AB
- I_P
- Slew Rate $(\frac{dv_0}{dt})_{max}$


Relación de Rechazo de Modo Común (RRMC) $\longrightarrow RRMC = 20 \log \frac{A_v}{A_{MC}}$

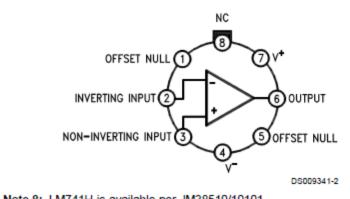

Relación de Rechazo de Fuente \longrightarrow 20 $\log \frac{\Delta V_0}{\Delta V^+}$ O 20 $\log \frac{\Delta V_0}{\Delta V^-}$


Ancho de Banda

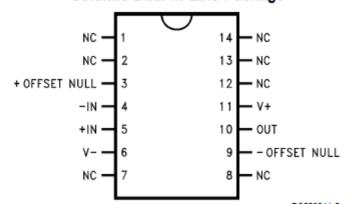
$$Slew - Rate = \left(\frac{dv_0}{dt}\right)_{MAX}$$

CARACTERISTICAS ELECTRICAS DEL XX741

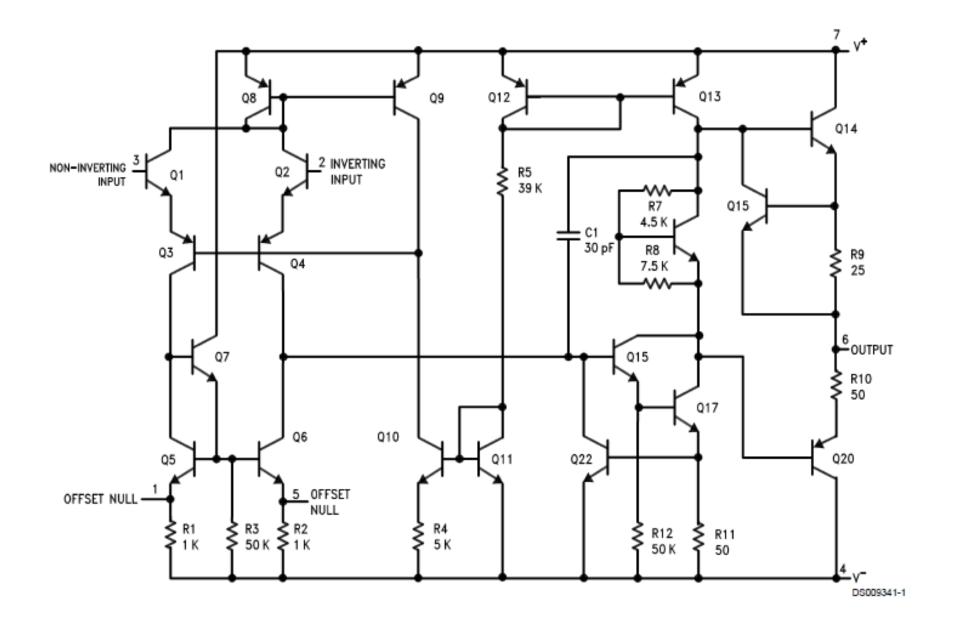
Parameter	Conditions	LM7	41A/LN	//741E		LM741		LM741C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	T _A = 25°C										
	$R_S \le 10 \text{ k}\Omega$					1.0	5.0		2.0	6.0	mV
	$R_S \le 50\Omega$		8.0	3.0							mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_S \le 50\Omega$			4.0							mV
	$R_S \le 10 \text{ k}\Omega$						6.0			7.5	mV
Average Input Offset				15							μV/°C
Voltage Drift											
Input Offset Voltage	$T_A = 25^{\circ}C, V_S = \pm 20V$	±10				±15			±15		mV
Adjustment Range											
Input Offset Current	T _A = 25°C		3.0	30		20	200		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			70		85	500			300	nA
Average Input Offset				0.5							nA/°C
Current Drift											
Input Bias Current	T _A = 25°C		30	80		80	500		80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			0.210			1.5			8.0	μA
Input Resistance	$T_A = 25^{\circ}C, V_S = \pm 20V$	1.0	6.0		0.3	2.0		0.3	2.0		MΩ
	$T_{AMIN} \le T_A \le T_{AMAX}$	0.5									MΩ
	$V_s = \pm 20V$										
Input Voltage Range	T _A = 25°C							±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				±12	±13					V

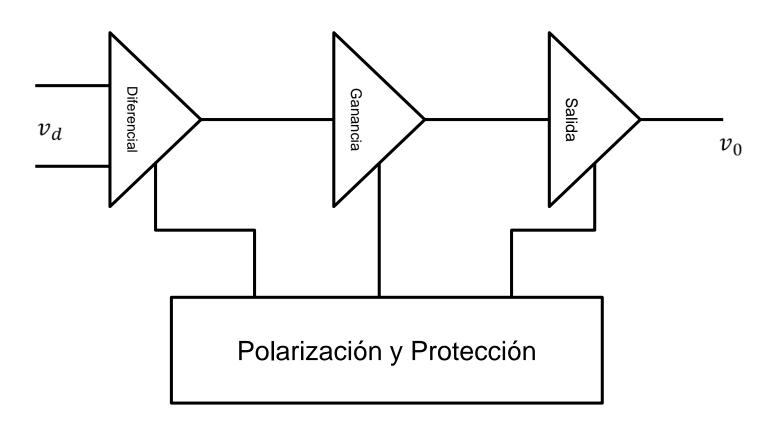

CARACTERISTICAS ELECTRICAS DEL XX741

Parameter	Conditions	LM7	41A/LN	//741E		LM741		LM741C			Units
		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	
Large Signal Voltage Gain	$T_A = 25^{\circ}C, R_L \ge 2 k\Omega$										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	50									V/mV
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				50	200		20	200		V/mV
	$T_{AMIN} \le T_A \le T_{AMAX}$										
	$R_L \ge 2 k\Omega$,										
	$V_{S} = \pm 20V, V_{O} = \pm 15V$	32									V/mV
	$V_{S} = \pm 15V, V_{O} = \pm 10V$				25			15			V/mV
	$V_{S} = \pm 5V, V_{O} = \pm 2V$	10									V/mV
Output Voltage Swing	V _S = ±20V										
	$R_L \ge 10 \text{ k}\Omega$	±16									V
	$R_L \ge 2 k\Omega$	±15									V
	V _S = ±15V										
	$R_L \ge 10 \text{ k}\Omega$				±12	±14		±12	±14		V
	$R_L \ge 2 k\Omega$				±10	±13		±10	±13		V
Output Short Circuit	T _A = 25°C	10	25	35		25			25		mA
Current	$T_{AMIN} \le T_A \le T_{AMAX}$	10		40							mA
Common-Mode	$T_{AMIN} \le T_A \le T_{AMAX}$										
Rejection Ratio	$R_S \le 10 \text{ k}\Omega$, $V_{CM} = \pm 12V$				70	90		70	90		dB
	$R_S \le 50\Omega$, $V_{CM} = \pm 12V$	80	95								dB
Supply Voltage Rejection	$T_{AMIN} \le T_A \le T_{AMAX}$										
Ratio	$V_S = \pm 20V$ to $V_S = \pm 5V$										
	$R_S \le 50\Omega$	86	96								dB
	$R_S \le 10 \text{ k}\Omega$				77	96		77	96		dB


CARACTERISTICAS ELECTRICAS DEL XX741

Transient Response	T _A = 25°C, Unity Gain								
Rise Time			0.25	8.0	0.3		0.3		μs
Overshoot			6.0	20	5		5		%
Bandwidth (Note 5)	T _A = 25°C	0.437	1.5						MHz
Slew Rate	T _A = 25°C, Unity Gain	0.3	0.7		0.5		0.5		V/µs
Supply Current	T _A = 25°C				1.7	2.8	1.7	2.8	mA
Power Consumption	T _A = 25°C								
	$V_S = \pm 20V$		80	150					mW
	$V_S = \pm 15V$				50	85	50	85	mW
LM741A	V _S = ±20V								
	$T_A = T_{AMIN}$			165					mW
	$T_A = T_{AMAX}$			135					mW
LM741E	V _s = ±20V								
	$T_A = T_{AMIN}$			150					mW
	$T_A = T_{AMAX}$			150					mW
LM741	V _S = ±15V								
	$T_A = T_{AMIN}$				60	100			mW
	$T_A = T_{AMAX}$				45	75			mW


Metal Can Package


Ceramic Dual-In-Line Package

CIRCUITO INTERNO DEL XX741

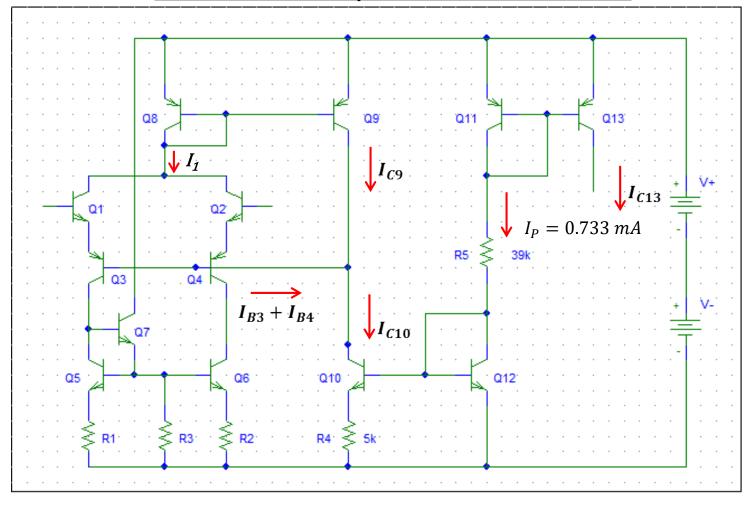
ESQUEMA DEL AMPLIFICADOR OPERACIONAL XX741

Diferencial

- Q1 Q2
- Q3 Q4
- Q5 Q6 Q7
- R1 R2 R3

- Ganancia
- Q15 Q17
- R11 R12

- <u>Salida</u>
- Q14 Q20
- R10

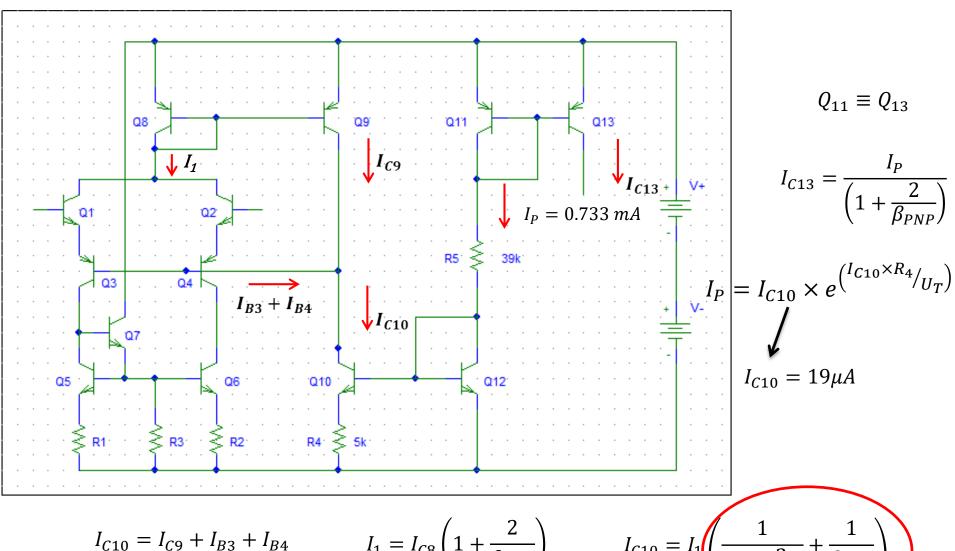

<u>Polarización</u>

- Q8 Q9 Q10
- Q11 Q12 Q13
- R4 R5

Protección

- Q15 Q22
- R9 R11

Corrientes de polarizacion XX741


$$V^{+} + V^{-} - V_{BE11} - V_{R5} - V_{BE12} = 0$$

$$I_{P} = \frac{V_{R5}}{R_{5}}$$

$$I_{P} = \frac{V^{+} + V^{-} - 2V_{BE}}{R_{5}}$$

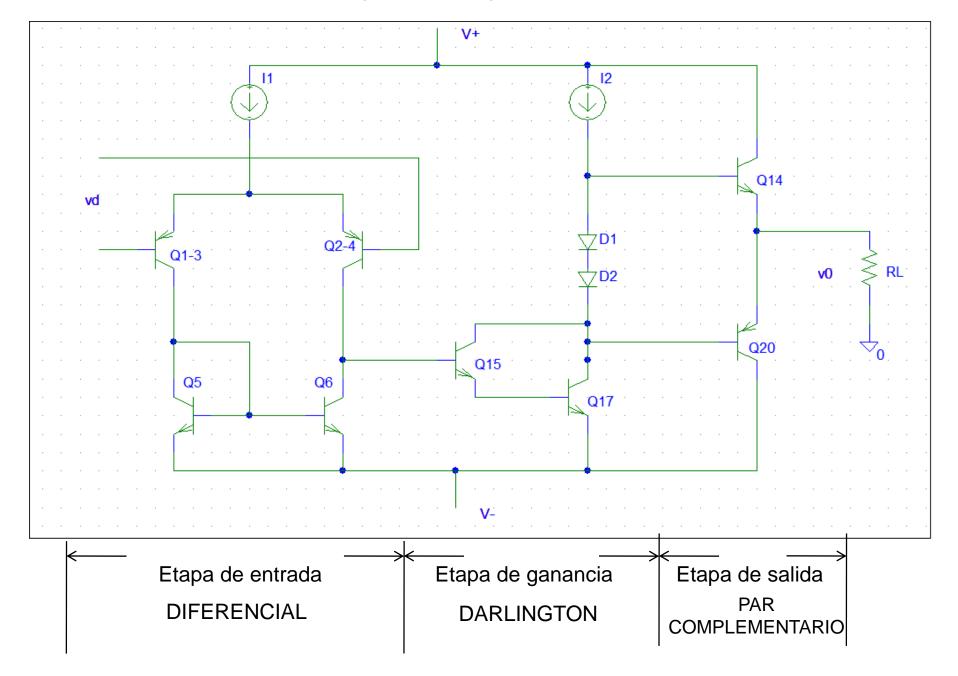
$$Si V^{+} = V^{-} = 15V$$

$$I_{P} = \frac{15V + 15V - 2x0.7V}{39K\Omega}$$

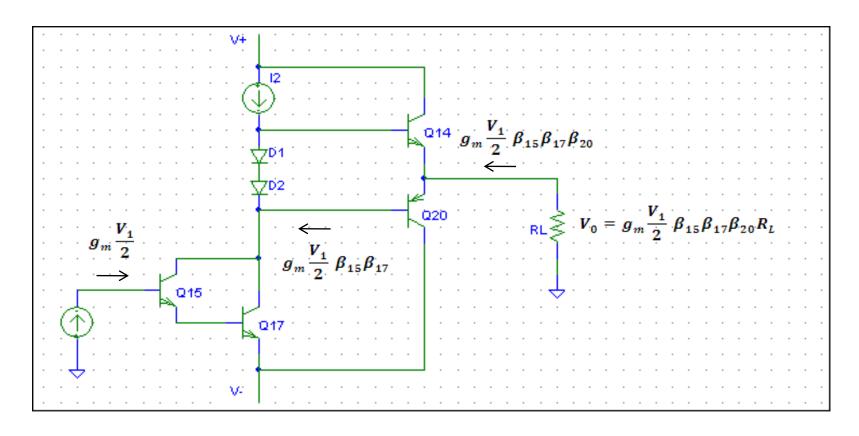
$$I_{B3} = I_{B4} = \frac{I_1}{2 \, \beta_{PNP}}$$

$$I_{C10} = I_{C9} + \frac{I_1}{\beta_{PNP}}$$

$$I_1 = I_{C8} \left(1 + \frac{2}{\beta_{PNP}} \right)$$

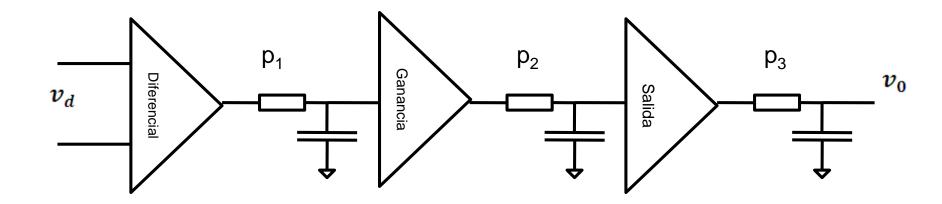

 $I_{C8} = I_{C9}$

$$I_1 = I_{C9} \left(1 + \frac{2}{\beta_{PNP}} \right)$$


$$= I_1 \left(\frac{1}{1 + \frac{2}{\beta_{PNP}}} + \frac{1}{\beta_{PNP}} \right)$$

$$\sim 0.93$$

Circuito simplificado para calculo Ri Av AB



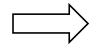
Ganancia del XX741

$$A_v = \frac{v_0}{v_1}$$

$$A_v = \frac{g_m}{2} \beta_{15} \beta_{17} \beta_{20} R_L$$

$$A_v = \frac{I_1}{4 U_T} \beta_{15} \beta_{17} \beta_{20} R_L$$

RESPUESTA EN FRECUENCIA DEL XX741


Cada polo atrasa 90°

Total atraso polos 270°

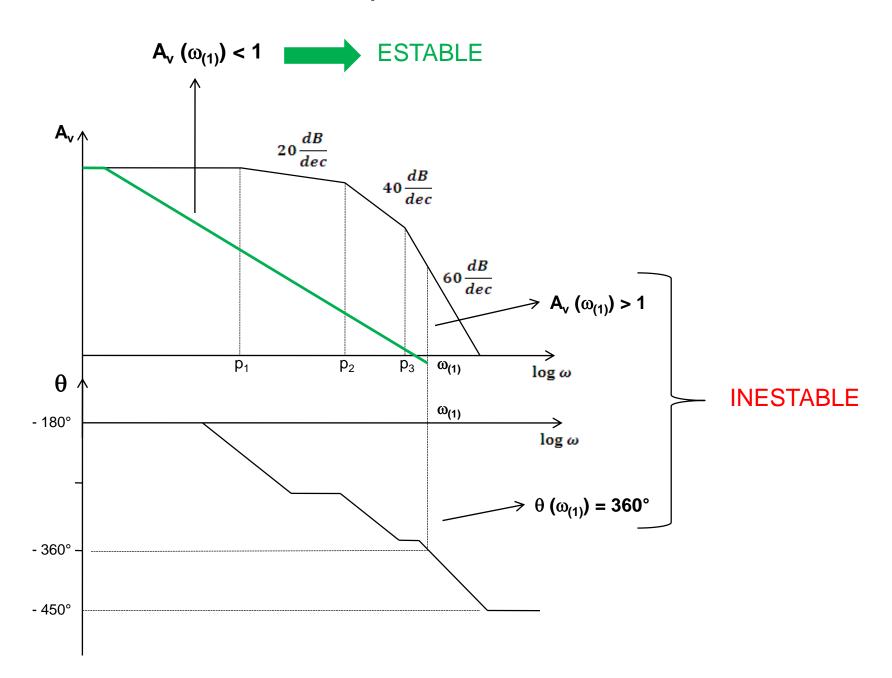
Entre v_d y v_0 la fase es 180°

Fase total entre v_d y v_0 450°

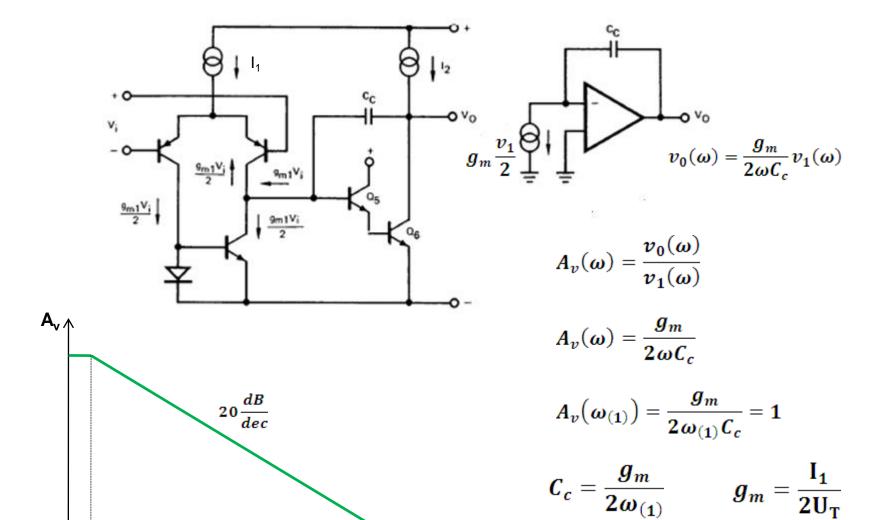
Si cuando la fase entre v_d y v_0 es $360^{\circ} A_v > 1$

Inestabilidad

Para hacer estable el circuito


Cuando la fase entre v_d y v_0 sea 360° hacer A_v < 1

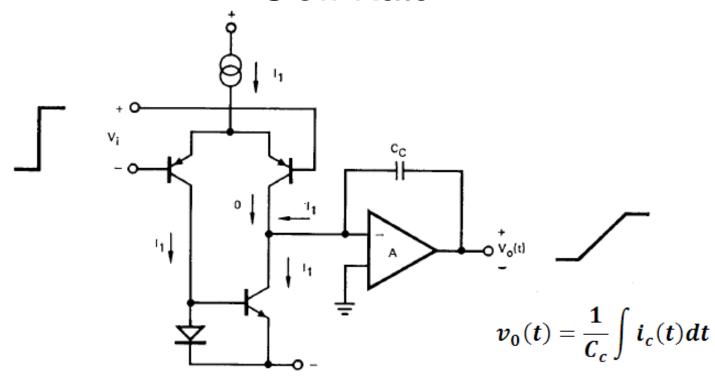
Encontramos la frecuencia ω para la cual θ = 360°


Esta frecuencia es $\omega_{(1)}$

Hacemos que $A_v(\omega) \leq 1$ para $\omega = \omega_{(1)}$

Respuesta en Frecuencia

COMPENSACION DEL AMP. OP. XX741



 $\omega_{(1)}$

 $\log \omega$

 ω_{3dB}

Slew Rate

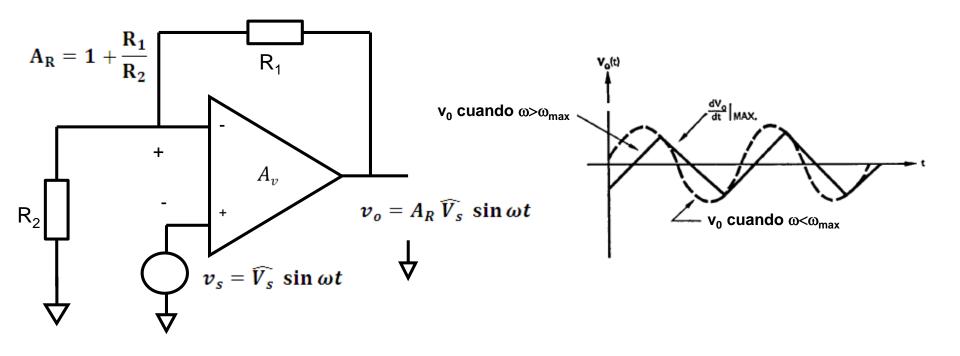
$$v_0(t) = \frac{1}{C_c} \int I_1 dt$$

$$v_0(t) = \frac{I_1}{C_2}t$$

$$v_0(t) = \frac{I_1}{C_c}t$$

$$\left(\frac{dv_0(t)}{dt}\right)_{max} = \frac{I_1}{C_c}$$

$$S - R = \frac{I_1}{C_c}$$


$$\left(\frac{g_m v_1}{2}\right)_{MAX} = I_1 \qquad (v_1)_{MAX} = \frac{2I_1}{g_m} \qquad g_m = \frac{I_1}{2U_T}$$

$$(\boldsymbol{v_1})_{MAX} = \frac{2I_1}{g_n}$$

$$g_m = \frac{I_1}{2U_T}$$

$$(\boldsymbol{v_1})_{MAX} = 4 \; \boldsymbol{U_T}$$

Ancho de banda de potencia

$$\frac{dv_0}{dt} = A_R \widehat{V_s} \omega \cos \omega t$$

Cuando
$$\cos \omega t = 1$$

Cuando
$$\cos \omega t = 1$$
 $\left(\frac{dv_0}{dt}\right)_{max} = A_R \widehat{V_s} \omega$

Onda senoidal máxima pendiente en el cruce por cero (punto de inflexión)

$$\left(\frac{dv_0}{dt}\right)_{MAX} = \text{S-R} \qquad \longrightarrow \qquad A_R \widehat{V_s} \omega \leq \text{S-R} \qquad \longrightarrow \qquad \omega_{max} \leq \frac{S-R}{A_R \widehat{V_s}}$$

Limite del Slew - Rate

$$S - R = \frac{I_1}{C_c}$$
 $C_c = \frac{g_m}{2\omega_{(1)}}$ $S - R = \frac{I_1}{g_m/2\omega_{(1)}}$ $S - R = 2\omega_{(1)}\frac{I_1}{g_m}$

Para mejorar el S-R:

$$\omega_{(1)}$$
 \uparrow I_1/g_m

Cuando la etapa de entrada se implementa con TBJ's

$$g_m = \frac{I_1}{2U_T}$$
 $\frac{I_1}{g_m} = 2U_T = \text{cte.}$ $S - R = 4U_T \omega_{(1)}$

Cuando la etapa de entrada se implementa con JFET

$$I_1 = I_{DSS} \left(1 - \frac{V_{GS}}{V_P} \right)^2$$
 $g_m = 2 \frac{I_{DSS}}{V_P} \left(1 - \frac{V_{GS}}{V_P} \right)$ $\frac{I_1}{g_m} = \frac{(V_P - V_{GS})}{2}$

$$\left(\frac{I_1}{g_m}\right)_{max} = \frac{V_P}{2} \qquad (I_1)_{max} = I_{DSS} \rightarrow \text{cuando } V_{GS} = 0 \qquad S - R = V_P \omega_{(1)}$$

Relacion del S-R de entrada JFET a entrada TBJ

$$\frac{S - R_{(JFET)}}{S - R_{(TBI)}} = \frac{V_P}{4U_T}$$

CARACTERISTICAS ELECTRICAS AMP-OP-LF411

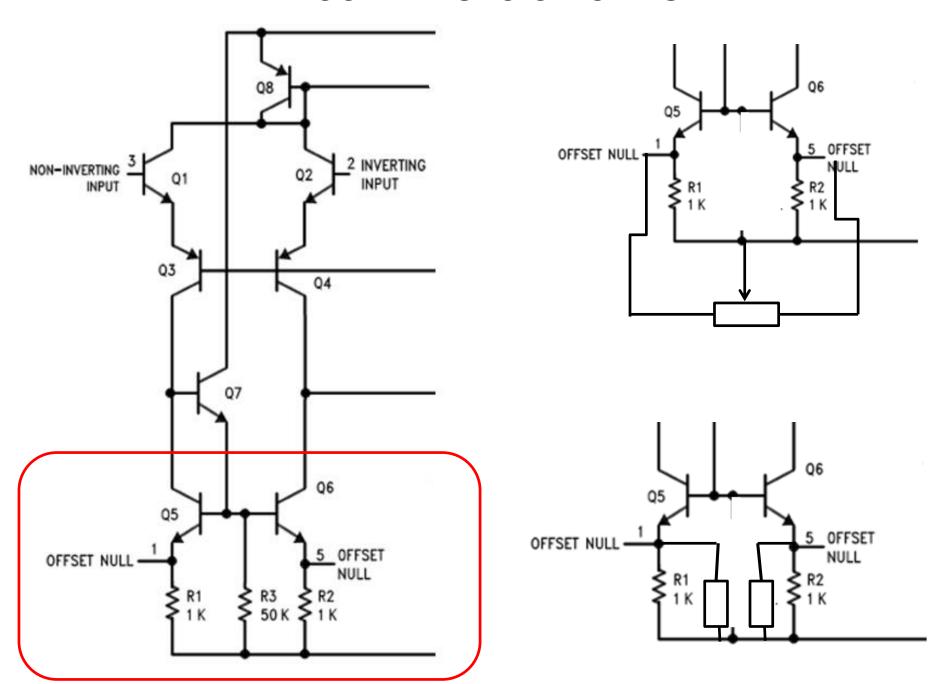
DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	tions		LF411A			LF411			
Symbol	r al ameter	Conditions		Min	Тур	Max	Min	Тур	Max	Units	
Vos	Input Offset Voltage	R_S = 10 k Ω , T_A = 25°C			0.3	0.5		0.8	2.0	mV	
ΔV _{OS} /ΔT	Average TC of Input Offset Voltage	R_S = 10 k Ω (Note 5)			7	10		7	20 (Note 5)	μV/°C	
Ios	Input Offset Current	$V_S = \pm 15V$	$T_j = 25$ °C		25	100		25	100	pΑ	
		(Notes 4, 6)	T _j =70°C			2			2	nΑ	
			$T_j = 125^{\circ}C$			25			25	nA	
IB	Input Bias Current	$V_S = \pm 15V$	T _j =25°C		50	200		50	200	pΑ	
		(Notes 4, 6)	T _j =70°C			4			4	nA	
			T _j =125°C			50			50	nA	
R _{IN}	Input Resistance	T _j =25°C			1012			1012		Ω	
A _{VOL}	Large Signal Voltage Gain	$V_S = \pm 15V, V_O = \pm 10V,$ $R_L = 2k, T_A = 25^{\circ}C$		50	200		25	200		V/mV	
		Over Temperature		25	200		15	200		V/mV	
V _O	Output Voltage Swing	$V_S = \pm 15V, R_L = 10k$		±12	±13.5		±12	±13.5		٧	
V_{CM}	Input Common-Mode			±16	+19.5		±11	+14.5		٧	
	Voltage Range				-16.5			-11.5		V	
CMRR	Common-Mode Rejection Ratio	R _S ≤10k		80	100		70	100		dB	
PSRR	Supply Voltage Rejection Ratio	(Note 7)		80	100		70	100		dB	
Is	Supply Current				1.8	2.8		1.8	3.4	mA	

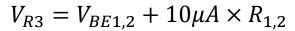
AC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions		LF411A	١		LF411		Units
Symbol	ratameter	Conditions	Min	Тур	Max	Min	Тур	Max	Onits
SR	Slew Rate	$V_S = \pm 15V, T_A = 25^{\circ}C$	10	15		8	15		V/µs
GBW	Gain-Bandwidth Product	V _S = ±15V, T _A =25°C	3	4		2.7	4		MHz

CARACTERISTICAS ELECTRICAS AMP-OP-TL081

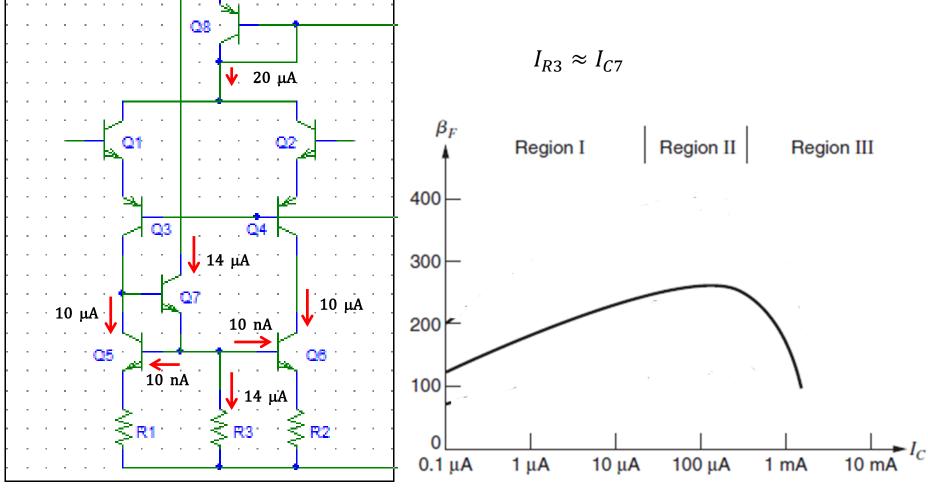

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions		Units			
Symbol	raiameter	Conditions	Min	Тур	Max	Oille	
Vos	Input Offset Voltage	$R_S = 10 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$ Over Temperature		5	15 20	mV mV	
$\Delta V_{OS}/\Delta T$	Average TC of Input Offset Voltage	$R_S = 10 k\Omega$		10		μV/°C	
Ios	Input Offset Current	$T_j = 25$ °C, (Notes 3, 4) $T_j \le 70$ °C		25	100 4	pA nA	
I _B	Input Bias Current	$T_j = 25$ °C, (Notes 3, 4) $T_j \le 70$ °C		50	200 8	pA nA	
R _{IN}	Input Resistance	$T_j = 25^{\circ}C$		1012		Ω	
A _{VOL}	Large Signal Voltage Gain	$V_S=\pm 15V, T_A=25^{\circ}C$ $V_O=\pm 10V, R_L=2 k\Omega$ Over Temperature	25 15	100		V/mV V/mV	
Vo	Output Voltage Swing	$V_S = \pm 15V, R_L = 10 \text{ k}\Omega$	± 12	±13.5		V	
V _{CM}	Input Common-Mode Voltage Range	V _S = ±15V	±11	+ 15 -12		V V	
CMRR	Common-Mode Rejection Ratio	$R_S \le 10 \text{ k}\Omega$	70	100		dB	
PSRR	Supply Voltage Rejection Ratio	(Note 5)	70	100		dB	
Is	Supply Current			1.8	2.8	mA	

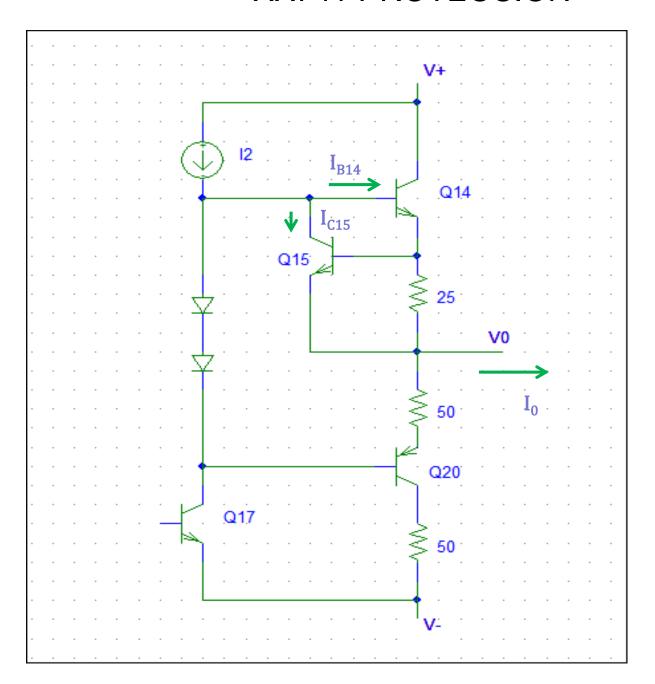

AC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions		TL081C		Units	
	ranatei	Conditions	Min	Тур	Max	- Cilico	
SR	Slew Rate	$V_S = \pm 15V$, $T_A = 25$ °C		13		V/µs	
GBW	Gain Bandwidth Product	V _S = ±15V, T _A = 25°C		4		MHz	

XX741 COMPENSACION OFF-SET



Polarización de Q₇



$$V_{R3} = 0.7 V$$

$$I_{R3} = \frac{V_{R3}}{50 \, K\Omega} = 14 \, \mu A$$

XX741 PROTECCION

$$V_{BE15} = I_0 \times 25$$

$$I_0 \times 25 \cong 0.7 \text{ V}$$

$$I_{C15} \neq 0$$

Disminuye I_{B14}