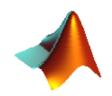
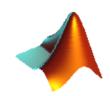

CONTROL DE PROCESOS

Guía para usar Control System Toolbox



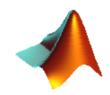
Definición de funciones de transferencia



 Definición de funciones de transferencia (forma simbólica)

Universidad Nacional de Tucumán

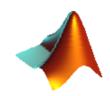
Definición de funciones de transferencia


Conversión de sistemas

```
>> G=tf([1 2],[1 3 5])
```

>> G=zpk(G) -> expresa la función G en función de los polos, ceros y ganancia.

>> G=tf(G) -> devuelve la conversión


Universidad Nacional de Tucumán

Funciones de transferencia con tiempo muerto

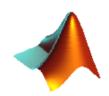
Por ejemplo para crear una función de transferencia:

$$G(s) = \frac{1.2 \exp(-2.5s)}{10 s + 1}$$

Universidad Nacional de Tucumán

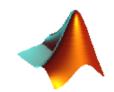
Aproximación de Padè para tiempo muerto

(opcional su uso)

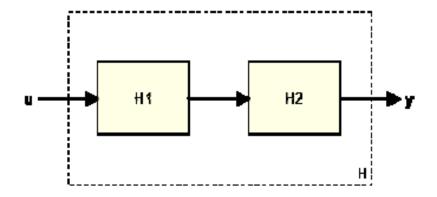

$$H(s) = \exp(-2.5s)$$

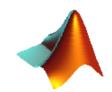
Ha = pade(2.5,3) \rightarrow Aproxima H con una función de orden 3

s = tf('s');


 $H = \exp(-2.5*s); \rightarrow H \text{ definida con } s,$

Ha = pade(H,4) → Aproximación de Padè de orden 4

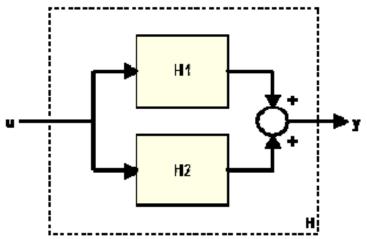

- >> zero(G) -> Muestra los ceros de la función
- >> pole(G) -> Muestra los polos de la función
- >> [Z,GAIN]=zero(G) → muestra los ceros y la ganancia
- >> pzmap(G) -> grafica el diagrama de polos y ceros


QUÍMICA

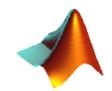
- Conexión de Sistemas
 - Conexión en serie

>>H=series(H1,H2)

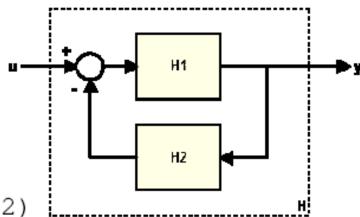
>>H=H1*H2



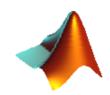
QUÍMICA


Universidad Nacional de Tucumán

- Conexión de Sistemas
 - Conexión en paralelo

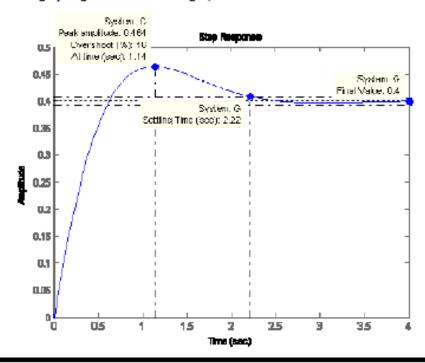

>>H=parallel(H1,H2)

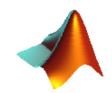
>>H=H1+H2



- Conexión de Sistemas
 - Conexión en realimentación

- >> H=feedback(H1,H2)
- >> H=feedback(H1, H2, +1) -> realimentación(+)
- >> H=feedback(H1,1) -> unitaria (H2=1)

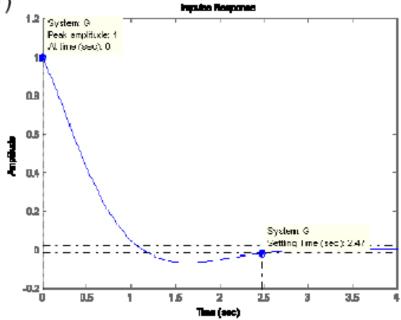


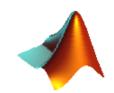

Universidad Nacional de Tucumán

INGENIERÍA QUÍMICA

Análisis temporal

>> step(G)




Universidad Nacional de Tucumán

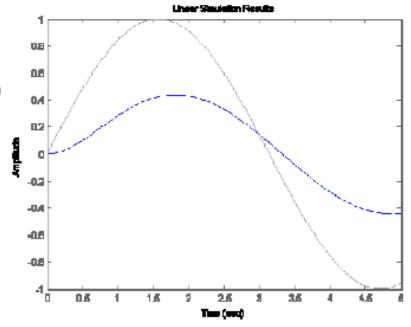
INGENIERÍA QUÍMICA

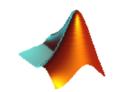
Análisis temporal

>> impulse(G)

Universidad Nacional de Tucumán

INGENIERÍA QUÍMICA


Análisis temporal


>> G=tf([1 2],[1 3 5])

>> t=0:0.1:5;

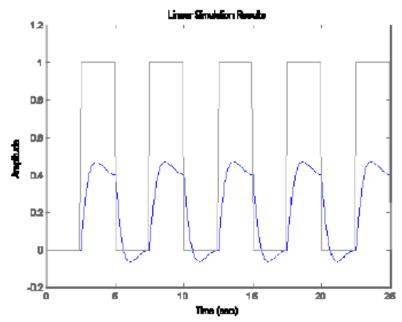
>> u=sin(t);

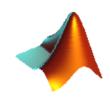
>> **lsim**(G, u, t)

Universidad Nacional de Tucumán

INGENIERÍA QUÍMICA

Análisis temporal


```
>> G=tf([1 2],[1 3 5])
```

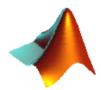

>> [u,t] = gensig ('square',5);

>> lsim(G,u,t)

Tipos:

- 'square'
- 'sin'
- 'pulse'

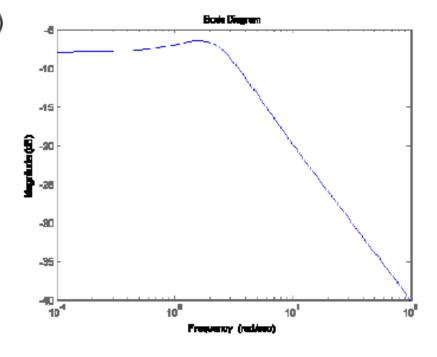
INGENIERÍA QUÍMICA

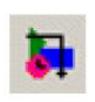

Análisis en frecuencia

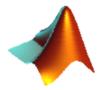
>> bode (G)

Bode Diagram

| Solution | Solu

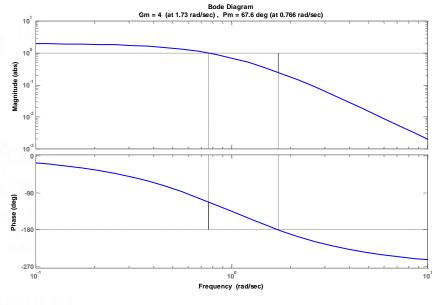


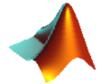



Análisis en frecuencia

>> G=tf([1 2],[1 3 5])

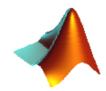
>> bodemag(G)





Análisis en frecuencia

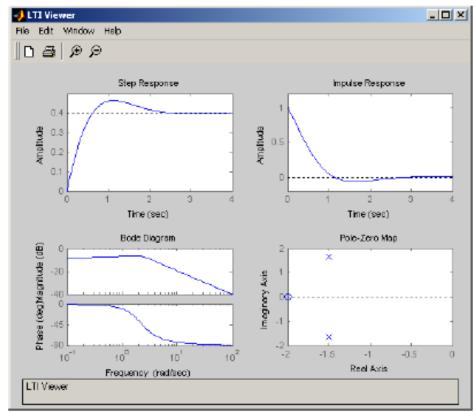
Genera el diagrama de Bode indicando los márgenes de ganancia y de Fase


Universidad Nacional de Tucumán

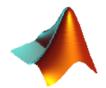
Análisis en frecuencia

Devuelve los valores de los márgenes de ganancia y de Fase y de la frecuencia crítica y la frecuencia w1

MG =



Universidad Nacional de Tucumán


INGENIERÍA QUÍMICA

Interfaz de análisis de modelos LTI

>> ltiview

Universidad Nacional de Tucumán

INGENIERÍA QUÍMICA

