

CONTROL DE PROCESOS Guía para crear un modelo en Simulink

Creación de nuevo modelo en Simulink

- Para editar un modelo
 - Abrir la ventana de un nuevo modelo
 - Conectar los bloques
 - Añadir bloques
 - Cambiar el tamaño de los bloques
 - Modificar etiquetas y añadir anotaciones
 - Parametrizar los bloques y la simulación
 - Ejecutar y modificar
- Guardar un modelo (formato Simulink y .m) Abrir un modelo desde Matlab

- Un modelo Simulink típico consiste de tres elementos:
 - Entradas, Sources o inputs
 - Constantes, generadores de funciones (ondas senoidales, escalón o señales creadas en Matlab)
 - Sistema modelado, representado por el diagrama de bloques
 - Salidas, Sinks u outputs
 - Gráficos, osciloscopios, ficheros

 Para crear un modelo en Simulink se pulsa sobre el icono New model □ del Simulink Library Browser o se selecciona File → New → Model

Simulink Library Browser	4 * 1
<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>H</u> elp	
Commonly Used Blocks: simulink/Con Used Blocks	monly
E Simulink 	Comr used k

Espacio de trabajo

• En el espacio de trabajo se colocarán los diagramas de bloque del modelo

Añadir bloques

Hacer click sobre una librería para desplegar los bloques

Arrastrar los bloques deseados dentro de la ventana del modelo Simulink

Añadir bloques

Hacer click sobre una librería para desplegar los bloques

Añadir bloques

Hacer click sobre una librería para desplegar los bloques

Conectar los bloques

Para añadir un conector: Arrastrar, pulsando el botón derecho del ratón y la tecla Ctrl, desde una salida, o desde una entrada, de alguno de los bloques al otro bloque

Tras seleccionar el bloque, aparecen en él los puntos, desde los cuales se puede arrastrar para cambiar el tamaño del bloque

Posteriormente se pueden mover el bloque para que las líneas de conexión queden rectas

Hacer click en la etiqueta y editarla

Hacer dobleclick en el fondo y escribir el texto

intitled *	Source Block Parameters: Entrada escalón
File Edit View Simulation Format Tools Help	Source Block Parameters: Entrada escalón Step Output a step. Parameters Step time: Initial value: 0 Final value: 1 Sample time: 0 Interpret vector parameters as 1-D Image: Interpret vector parameters as 1-D Image: Interpret vector parameters as 1-D

untitled *	
<u>File Edit View Simulation Format Tools H</u> elp	Function Block Parameters: Sistema
Entrada escalón Sistema Salida	Transfer Fcn The numerator coefficient can be a vector or matrix expression. The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of s.
simout Salida Sistema de Primer Orden	Parameters Numerator coefficient: Denominator coefficient: [1]
	Absolute tolerance: auto State Name: (e.g., 'position')
	<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>A</u> pply

untitled * File Edit View Simulation Format Tools Help	🚺 'Gráfica salida' parameters 📃 💷 💻 🏊
Lettrada escalón Sistema Sistema Sistema de Primer Orden	General Data history Tip: try right clicking on axes Axes Number of axes: 1 Time range: auto Tick labels: bottom axis only Sampling
	Decimation 🖌 1 OK Cancel Help Apply

🙀 untitled *	Sink Block Parameters: Salida
File Edit View Simulation Format Tools Help	To Workspace Write input to specified array or structure in MATLAB's main workspace. Data is not available until the simulation is stopped or paused. Parameters Variable name: simout Limit data points to last: inf Decimation: 1 Sample time (-1 for inherited): -1 Save format: Structure Log fixed-point data as an fi object

Guardar el modelo

- Para guardar el modelo seleccionar File \rightarrow Save
- El sufijo de los modelos Simulink es .mdl
- Desde la ventana de comandos de Matlab se puede abrir el modelo escribiendo el nombre del fichero

뒢 u	ntitled *			👿 Save As	_				×
File	Edit View Simulation	Format	<u>T</u> ools <u>H</u> elp	Guar <u>d</u> ar er	: 🚺 MATL	AB _	· + 🗈 📥	*	
	New	+		Pa	Nombre	*	Fecha de mo	difica Tipo	D
	Open	Ctrl+O			al demo	odeploy	03/12/2010 14	4:03 Carp	peta d
	Close	Ctrl+W	╶┭─╼┝└─┘│	Sitios recientes	🚺 pr_de	eploy	03/12/2010 14	4:33 Carp	peta d
	Save	Ctrl+S	Gráfica						
	Save As		salida	Escritorio					
	Source Control	÷	simout						
	Model Properties		Salida	Bibliotecas					
	Preferences		den	Equipo					
4	Export to Web								
	Print	Ctrl+P		Red					
	Print Details			neu	-				
	Print Setup				•				
	Enable Tiled Printing				Nombre:	ejem 1		<u>G</u> uard	dar
	Exit MATLAB	Ctrl+Q			<u>T</u> ipo:	Simulink Models (*.mdl)	-	Cance	elar

- Asignar los parámetros de la simulación
- Ejecutar una simulación desde la ventana del modelo
- Poner y sacar valores en/desde los modelos
 - Utilizar en Matlab los valores obtenidos en la simulación
 - Variables definidas en Matlab y Simulink
- Simular desde la línea de comandos

Asignar parámetros de la simulación

🙀 ejem1	-			
File Edit View	Simulation Format Tool	ls Help		
	Start	Ctrl+T		
	Stop			
	Configuration Parame	ters		
Entrada escalón	Normal Accelerator	Configuration Parameter	rs: ejem1/Configuration (Active)	
	Rapid Accelerator External	Select:	Simulation time	1
	Sistema de Primer Orden	Data Import/Export	Start time: 0.0 Stop time: 10.0	
1		Optimization Diagnostics	Solver options	
			Type: Variable-step 🖵 Solver: ode45 (Dormand-Prince) 🖵	
		Model Referencing	Max step size: auto Relative tolerance: 1e-3	
			Min step size: auto Absolute tolerance: auto	=
			Initial step size: auto	
			Automatically handle data transfers between tasks	
			Higher priority value indicates higher task priority	
			Solver diagnostic controls	
			Number of consecutive min step size violations allowed: 1	
			Consecutive zero crossings relative tolerance: 10×128×eps	
			Number of consecutive zero crossings allowed: 1000	
			<u>O</u> K <u>Cancel Help</u> <u>Apply</u>	

- Solvers proporcionados:
 - ode45: Método basado en Dormand Prince , un paso Runge Kutta y es recomendado como un primer método
 - ode23: Método basado en Bogacki Shampine, un paso un paso Runge – Kutta y pude ser más eficiente que ode45 cuando la tolerancia es amplia
 - ode113: Este es un multipaso, de orden variable Adams –
 Bashforth Moulton PECE. Es recomendable cuando la función evaluación consume tiempo y la tolerancia es poca
 - ode15s: Es un multipaso, de orden variable basado en la fórmula de diferenciación "backward"
 - ode23: un paso basado en la fórmula de Rosembrock de orden 2.

Parámetros de la simulación

• Otros parámetos tiene que ver con la entrada/salida de datos al modelo y desde el modelo

Configuration Parameter:	s: ejem1/Configuration (Ac	tive)
Select: Solver Data Import/Export Optimization Diagnostics Hardware Implementation Model Referencing Real-Time Workshop	Load from workspace Input: Input: Initial state: Save to workspace ITime: States: States: Output: States: Final states: Signal logging: logsou	
-	Save options Limit data points to last Format: Output options:	: 1000 Decimation: 1 Array Refine output □K Cancel Help Apply

Parámetros de la simulación

• Los parámetros y variables de los modelos se pueden acceder desde la ventana de Comandos de Matlab

Parámetros de la simulación

• Los parámetros y variables de los modelos se pueden acceder desde la ventana de Comandos de Matlab

 Tanto desde la ventana de Matlab como la de Simulink se "ve" el mismo Workspace o Espacio de trabajo

Ejecución de la simulación

 Se pulsa el icono Start ► o en el menú Simulation → Start

Comando Matlab sim

[t, x, y] = sim('model', Timespan, Opciones, ut) donde *model* es el nombre del diagrama de bloques. Timespan especifica la salida de los puntos de tiempo Opciones es una estructura que permite asignar los valores de los parámetros en la ventana de diálogo Simulation:Parameters

ut asigna la parte Load de la página Workspace I/O de la ventana Simulation:Parameters

Ejemplo:

- > [t, y] = sim('ejem1_1',5);
- > plot(t, y)

Solución de ecuaciones diferenciales que modelan Sistemas Continuos

• Modelo Simulink que resuelve la ecuación diferencial:

$$\frac{dx}{dt} = 5\sin\left(4t\right)$$

• Condición inicial:

$$x(0) = -2.$$

- Input: función $5\sin(4t)$
- Output: *x(t)* que es la solución de la ecuación diferencial

integrador

• A continuación, se construye el modelo con Simulink

- La siguiente tabla resume el bloque y la librería donde se encuentra para ser inluído en el modelo
 - Se arrastra el bloque de la librería hasta la ventana de trabajo

Modelo	Librería Bloque	
Input	Sources	Sink
Integrador	Continuous	Integrator
Output	Sink	Scope

Selección de bloques para el modelo

Selección de bloques para el modelo

Selección de bloques para el modelo

Conexión de los bloques con líneas de señal

- Colocar el cursor en el puerto de salida (> a la derecha) del bloque "Sine Wave" .El cursor cambia de forma a cruz
- Arrastrar desde el puerto de salida del bloque "Sine Wave" hasta el puerto de entrada (> a la izquierda) del bloque "Integrator". Cuando el cursor se encuentra sobre el puerto de entrada cambia de forma a cruz doble
- Arrastrar desde la salida del bloque "Integrator" hasta la entrada del bloque "Scope"

Las flechas indican la dirección de la señal.

Configurar bloques con datos del modelo

- El input del modelo es:
 5sin(4t)
- Para ello se hace doble click en el bloque "Sine Wave" y en la ventana de diálogo de los parámetros del bloque ingresar:
 - Amplitude = 5

Frequency = 4

Source Block Parameters: Sine Wave
Sine Wave
Output a sine wave:
O(t) = Amp*Sin(Freq*t+Phase) + Bias
Sine type determines the computational technique used. The parameters in the two types are related through:
Samples per period = 2*pi / (Frequency * Sample time)
Number of offset samples = Phase * Samples per period / (2*pi)
Use the sample-based sine type if numerical problems due to running for large times (e.g. overflow in absolute time) occur.
Parameters
Sine type: Time based
Time (t): Use simulation time
Amplitude:
5
Bias:
0
Frequency (rad/sec):
4
Phase (rad):
0
Sample time:
<u> </u>

Configurar bloques con datos del modelo

- El valor inicial es: -2
- Para ello se hace doble click en el bloque "Integrator" y se ingresa la condición inicial = -2

Function Block Parameters: Integrator
Integrator
Continuous-time integration of the input signal.
Parameters
External reset: none
Initial condition source: internal
Initial condition:
-2
🔽 🔲 Limit output
Upper saturation limit:
inf
Lower saturation limit:
-m
Show saturation port
Show state port
Absolute tolerance:
auto
Ignore limit and reset when linearizing
Enable zero crossing detection
n
<u>OK</u> <u>Cancel</u> <u>H</u> elp <u>A</u> pply

Ejecutar la simulación

• En la ventana de trabajo, click en "Simulation" y seleccionar "Start"

icono Start 🕨

Visualizar resultados de la simulación

- Hacer doble click en el bloque "Scope"
- Se visualiza el output x(t) en la ventana Scope
- Se puede mejorar la visualización utilizando los iconos de la ventana. Ej.: Autoscale y Tick labels all

