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a b s t r a c t 

In this paper, we study the fluid flow in a deformable porous linear elastic media with a single 

crack �. Fluid exchange between the crack and the surrounding porous media is taken into 

account through the definition of appropriate boundary conditions on � obtained by apply- 

ing an averaging process of the Darcy flow within the crack. Two models are considered and 

compared: a semianalytical one which solves the general potential solution of the singular 

integral equation modelling the steady state flow in an infinite porous media with one lin- 

ear crack, obtained by applying the complex potential method, and a numerical one based on 

the Extended Finite Element Method (XFEM) of the governing equations. The XFEM we apply 

employs the standard enriched basis functions represented by the Heaviside function on � to 

describe the discontinuity jump of the displacement field across the crack, the distance func- 

tion to � to describe the non differentiability of the pressure field across � and the singular 

functions describing the 
√ 

r -singularity at the crack tip of the stress and pressure field, where 

r is the distance to the crack tip. The semianalytical model is used to verify the application of 

the XFEM. We include then the coupling with the mechanical response of the body, which is 

analyzed by using only the XFEM. Several numerical experiments are then carried out which 

illustrate the variation of the hydro-mechanical quantities around the crack and within the 

crack. 

© 2015 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

The analysis of the hydro-mechanical behaviour of fully saturated fractured porous media is significant in many engineer-

ing applications, such as flow transport in geologic media, hydraulic fracturing for petroleum engineering and mining industry,

permeability analysis for damage estimation, environmental engineering, just to mention few. Given its relevance to the appli-

cations, this problem has received much attention in the scientific community and has been analysed from the experimental,

analytical and numerical point of view. 

The experimental studies carried out on the steady-state flow in fractured rocks, geological formations or concrete under

given far field conditions, provide information on the effective permeability of the medium, the connected voids and the inter-

connection with macro and micro cracks of the material under study. Experiments on water permeability and its variation with

crack opening on saturated concrete specimens are reported in [1] , where splitting tensile tests (Brazilian test) have been used

for concrete fracturing tests. Further experimental results on permeability of damaged concrete can be found in [2] , where the
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concrete specimens deteriorate as a result of the exposition to high temperature conditions and of alkali silica reactions. The final

aim of these experiments is to quantify the level of deterioration of a material from its transport properties. Since the occurrence

of damage modifies the elastic properties and permeability of the material, the importance of studying cracking processes and

its influence in fluid flow is of major interest for the durability analysis of structures. 

Exact analytical solutions have been developed mainly for some simplified geometries. For the case of steady state flow, the

pressure is solution of the Laplace equation which is uncoupled from the equations of linear elasticity. As a result, the techniques

of solutions that have been applied are the classical one for finding harmonic functions in a domain with no-Lipschitz boundary.

A frequently adopted method of solution is the one based on a complex potential representation of the solution. This for instance

has been employed in [3] where an extension of the Muskhelishvili formalism of classical elasticity [4] is developed for stress

diffusion problems. Another instance of application of this method is given in [5] , where the authors consider the cracks as

singularity lines of the complex potentials representing the pore pressure solution and propose a corresponding form of such

potentials. The enforcement then of the boundary condition given in terms of known discharges along the non intersecting cracks

leads to a singular integral equation which is solved by applying a Gauss–Chebyshev numerical integration scheme for singular

integral equations [6] . This procedure has then been extended in [7,8] for more general cracks configurations and crack boundary

conditions, considering the case of intersecting cracks in an infinite anisotropic material and of cracks with a Poiseuille type

conductivity. 

For more complex geometries and crack configurations, it becomes necessary to resort to numerical methods that are capable

to describe the different type of singularities that can experience the solution field variables. For the equations of poroelasticity

in a slit domain, if we denote by � the slit contained in �, the solutions of the field equations, expressing the momentum and

mass balance, are generally expected to be no regular in � with the lack of regularity due to discontinuity jumps across � and

singular behaviour at the crack tips [9] . In this case, the application of standard conforming H 

1 -finite element methods is known

to perform quite poorly because of the singularity in the stress field, and the inherent inability to model fields with discontinuity

jumps which are not H 

1 -functions. A standard approach in FE practice would thus be the use of a mesh with edges aligned to the

crack and the splitting of nodes along the crack to model the discontinuity jump (a stratagem to model piecewise H 

1 -functions),

and the design of very fine meshes around the crack tip. By these approaches, however, a-priori knowledge of the location of

the discontinuity jump is required which must be aligned with the mesh edges. The XFEM (extended finite element method)

introduced in the works of [10,11] , on the other hand, has the ability to model the effects produced by the presence of geometric

singularities, such as cracks, cavities, material heterogeneity, independently of the mesh. This technique relies on a suitable

enrichment of the standard conforming finite element space by so called enrichment functions that are meant to account for the

singularity of the solution which could not be otherwise described by the standard conforming finite element shape functions.

The method exploits the partition of unity property of the finite elements [12,13] , that is, the sum of the shape functions must

equal to the unity, which in turn permits the shape functions to reproduce the constant function, which is a crucial condition for

the convergence of the method. 

Applications of the XFEM to porous media are given in [14–17] where the emphasis is placed mainly on the modeling of the

fluid flow and of the fluid exchange between the cavity and the surrounding porous media which is realised by means of an

averaging process of the Stokes equations in the cavity, whereas [18,19] address implementation issues of the application of the

method and extend it to the modelling of hydraulic fracturing using a cohesive crack model. The literature on the applications

of the XFEM to hydraulic fracturing, i.e. the production of cracks by the injection of fluid into a linear elastic brittle material, is

quite abundant [20–24] . In these works, the focus is mainly on the evaluation of the order of the pole of the pore pressure which

is not of the type 
√ 

r , with r the distance to the crack tip, and on how to choose consistently the enrichment shape functions.

We conclude, finally, by mentioning also the work [25] for an instance of application of the XFEM to capture the effects of an

arbitrary interior interface in the two-phase immiscible flow problem. 

In this paper we present a numerical model of the fluid flow in a deformable porous linear elastic fractured medium which

is built upon the XFEM and a reduced model of the fluid flow in the cracks. The XFEM is used to model the deformation of the

fractured porous medium and the singularities of the pressure gradient and velocity fields with meshes that are not aligned with

the crack interface, whereas the reduced model of the fluid flow is used to account for the reduced dimensionality of the fracture

geometry and of the type of flow therein, thus providing a considerable simplification of the governing equations within the

crack. We then also compare the performance of our numerical model to a semianalytical solution for the case of steady-state

flow. The governing equations are obtained in Section 2 by applying the theory of linear poroelasticity of Biot–Coussy [26] . Both

the domain occupied by the porous medium and the cracks are considered fully saturated. For the description of the coupled

hydromechanical behaviour of fracture media with cracks modelled individually, different approaches can be followed according

to the scale of description one adopts. A global simulation of the hydromechanical behaviour of the porous media and the cracks,

considered with their dimensionality, would result in a heavy computational model for the excessive mesh refining needed

within the crack and would be therefore very expensive, especially in the case of thin cracks which are the type of cracks we

are considering in this paper. In this case, therefore, it results more convenient to account of the reduced dimensionality of the

fracture geometry and derive reduced models of flow within the crack [15,27–29] . According to this approach, which is the one

we are interested in, the fractures are reduced to sharp interfaces � which are treated as internal material boundaries of the

porous medium endowed with a hydromechanical behaviour. The setting of the interface conditions on � is, however, a delicate

issue which is currently still object of investigation [30–35,43,44] . In this paper, we will account for the influence of the flow

exchange between the crack and the neighbouring porous media through an accurate modelling of the flow along �. At variance

of [15] where in deriving the interface conditions the cavity is considered filled with a Stokes flow, in Section 2.6 , we will assume
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Fig. 1. Infinitesimal saturated porous volume with a single discontinuity and definition of the sides �+ and �− . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that the crack is filled with porous media and determine the conditions on the interface � by averaging the Darcy flow within

the crack [27,29] . We will then proceed in Section 3 to describe the fully coupled discrete model. This is obtained by applying the

XFEM with the standard enriched basis functions as introduced in [11,23] for the space discretisation of the governing equations.

The enriched basis functions are represented by: ( i ) the Heaviside function to describe the discontinuity jump of the displacement

field across the crack; ( ii ) the signed distance to describe the non differentiability of the pressure field across �; and ( iii ) singular

functions describing the 
√ 

r -singularity at the crack tip of the stress and pressure field, where r is the distance to the crack

tip. Since the terms that describe the interaction between the flow within the crack and the deformation of the surrounding

porous media enter only through integrals defined over �, with the interface � being fixed, we will use also an XFEM type

interpolation of the field variables when evaluating such integrals. The application of XFEM to this problem has similarities to

the immerse interface method and its variants discussed in [36] where the effects of the interface are taken into account by means

of ad-hoc modifications of the finite difference schemes at the grid points near the interface [37] . For the time discretisation of

the resulting system of ordinary differential equations, we will then use the backward Euler method. To verify the resulting

numerical model, we will consider in Section 4 the special case of steady-state flow. Under this hypothesis, the linear poroelastic

equations uncouple into the Laplace equation for the pore pressure and the linear elastic equation for the effective stress. We

solve therefore the Laplace equation by applying the complex potential method. The use of this method and the enforcement of

the boundary conditions on �, given either by a prescribed pressure or by a Poiseuille conductivity type, transform the original

Laplace equation into a singular integral equation of the first kind, which we solve numerically using the collocation method

on Chebyshev nodes and Lobatto–Chebyshev quadratures [6] . The final section is devoted to numerical experiments where we

compare the two numerical models for the special case of steady-state flow; we discuss then a permeability test where the

XFEM numerical solution is compared to available experimental results and finally we give an example where we analyse the

fully coupled poroelastic problem in a fractured domain. 

2. Governing equations of a fractured porous media 

The saturated porous medium is next modelled as a two phase system: a solid deformable porous phase and a fluid phase

that fills the void spaces. The governing equations are then given by the balance equations of linear momentum and mass and the

constitutive equations of each phase. This section is devoted to derive briefly the governing equations of poroelasticity [38,39]

and to model the fluid flow exchange across the cracks. This will be carried out following a two-scale approach as described in

[14–16,40] . 

2.1. Model problem and notation 

We assume that the domain � ⊂ R 

N occupied by the porous media contains some cracks in its inside, i.e. � ⊂� with � being

a manifold of dimension less than N . For instance, if N = 3 , � will be either a surface or a line. In this work, we consider N = 2 ,

and � will represent lines contained in �. The sets of the cracks is denoted by �. Each component of � is described in terms of

a smooth function z = z(x ∗) which represents the parametric equation of the curve as a function of the curvilinear coordinate x ∗

along the crack (see Fig. 1 ). 

In this work, we consider non-intersecting cracks. Each crack has an orientation defined by the normal n � to the curve at z ∈
�. The choice of n � along with the tangent unit vector t � determines a positive face of � which we denote by �+ and a negative

face of � which we denote by �−. The definition of these two sides of � in relation to n � becomes relevant when we need to

apply the divergence theorem. The curve � does idealise a crack. In the definition of the boundary conditions on �, we will need

to consider � endowed with a structure, that is, � will be seen as the boundary of a cavity �c which in this treatment is assumed

to have L � 2 h , where h is the crack width and L is the characteristic crack length. The assumption L � 2 h justifies the averaging

process in Section 2.6 of the fields equations within the cavity. 
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2.2. Thermodynamic framework and constitutive equations 

For the derivation of the constitutive equations, we start from the Clausius–Duhem inequality which, for a deformable porous

continua, takes the form [39] 

� = �s + � f + �th ≥ 0 , 

where � represents the overall dissipation, whereas �s and �f are the solid and fluid sources of dissipation, respectively. The

thermal dissipation �th is assumed to be equal to zero given that in this paper, we will consider only isothermal processes. Next

let us denote by σ the total stress tensor, by u the displacement of the solid phase, by ε the corresponding strain tensor given

by ε = (∇u + ∇u 

T ) / 2 where ∇ is the gradient operator so that for u ∈ R 

N , (∇u ) i j = u i, j , i, j = 1 , . . . , N is the partial derivative

of the component u i of the field u with respect to the coordinate variable x j , whereas the superscript T denotes the transpose

operation. Under the assumption of small deformations, the solid matrix dissipation �s is given by 

�s = σ : 
dε 

dt 
− φ

dp 

dt 
− dG s 

dt 
, (2.1)

where φ denotes the Lagrangian porosity and G s = G s (ε , p) the free Gibbs energy with p the pore pressure. The term φdp / dt takes

into account the dissipation associated with the pore pressure acting on the matrix porous walls. The Lagrangian porosity φ is

related to the spatial porosity n by the relation φd �0 = nd � which for small deformations reduces to φ = Jn ≈ (1 + ε) n, with J

the Jacobian determinant of the strain tensor, i.e. J = det ε where det is the determinant operator. To obtain the equations of linear

isotropic poroelasticity, let tr denote the trace operator and 1 the identity second order tensor, then we consider for the quadratic

Gibbs free energy G s the following function of the first ( ε = tr ε ) and the second ( e : e ) strain invariant with e = ε − 1 
3 ε1 

G s (ε, e , p) = 

1 

2 

Kε 2 − bpε − 1 

2 

p 2 

N 

+ G e : e , (2.2)

where G and K denote the shear and drained volumetric elastic modulus of the porous media, respectively; b = 1 − K/K s ≤ 1 is

the Biot’s coefficient with K s the bulk modulus of the solid grains; 1 /N = (b − φ0 ) /K s is the Biot’s modulus and φ0 is the initial

porosity. By replacing (2.2) into (2.1) , poroelasticity is then defined by the condition that �s = 0 for all the admissible processes,

which yields 

σ = 2 G e + (Kε − bp) 1 ; φ = bε − p 

N 

. (2.3)

The dissipation associated with the fluid motion with respect to the solid matrix is given by 

� f = −∇p · n ( v f − v s ) . (2.4)

where v s = d u /d t is the velocity of the solid grains and v f the fluid velocity inside the porous space. If we consider the Darcy’s

law for the fluid phase, the constitutive equation is given by 

n ( v f − v s ) = −k f ∇p, (2.5)

with k f the permeability constant and ∇p = ∂ p/∂ x . Eq. (2.5) ensures that the fluid dissipation is non negative. 

2.3. Balance equations 

If we assume that the deformation of the solid is much slower than the flow rate, we can consider quasistatic conditions and

neglect the inertial terms. In this case, and for negligible body forces, the momentum conservation equation is given by 

∇ · σ = 0 in � \ �. (2.6)

Let us denote by ρ f the fluid density. Under the assumption of incompressible solid grains, the mass conservation equations for

the fluid and solid phase yield 

n 

ρ f 

∂ρ f 

∂t 
+ ∇ · v s + ∇ · n ( v f − v s ) = 0 in � \ �. (2.7)

Eq. (2.7) can be conveniently rewritten in terms of the pore pressure p by invoking the state equation that describes the ability

of the water to change mass due to changes in the hydrostatic pressure. By assuming the following relation [41] 

1 

ρ f 

∂ρ f 

∂t 
= 

1 

K f 

∂ p 

∂t 
, (2.8)

with K f the bulk modulus of the fluid, and replaced into (2.7) yields 

n 

K f 

∂ p 

∂t 
+ ∇ · v s + ∇ · n ( v f − v s ) = 0 in � \ �. (2.9)
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2.4. Boundary conditions and summary of the governing equations 

The balance equations (2.6) and (2.9) along with the constitutive equations (2.3) and (2.5) form a close system of equations

in the unknowns u , v f , p and n , and v s = 

du 
dt 

. Such equations must, however, be supplemented by initial and boundary conditions.

While the setting of the initial conditions does not require particular observations, some considerations are deemed necessary

in the choice of the boundary conditions. Given the nature of the problem, we will need to consider two different sets of bound-

ary conditions, one corresponding to the flow and the other one corresponding to the deformation. For each of them we can

have Dirichlet type boundary conditions and Neumann type boundary conditions. Since the solutions are sought within the do-

main ���, its boundary ∂( ���) will be given by the union of the boundary ∂� of � and of the set of cracks �. The boundary

∂� is correspondingly partitioned into ∂� = ∂ v � ∪ ∂ p � for the flow type boundary conditions and into ∂� = ∂ u � ∪ ∂ t � for

the deformation type boundary conditions. In this paper, we will consider therefore the following deformation type boundary

conditions 

u = ū on ∂ u � σn = t̄ on ∂ t �, (2.10) 

where n is the outward normal to ∂�, t̄ is the prescribed external traction and ū the prescribed displacement at the boundary,

and the following flow type boundary conditions: 

p = p̄ on ∂ p � n ( v f − v s ) · n = v̄ on ∂ v �, (2.11) 

where ̄v is the prescribed outflow of pore fluid and p̄ the prescribed pressure. A similar partition of the boundary conditions could

be done in principle also for �. However, on � we will consider only Neumann type boundary conditions for the deformation and

for the flow. The definition of these conditions is essential because they determine the coupling between the flow in the porous

media around the crack and the flow within the crack. For the deformation type Neumann boundary conditions, we assume that

the tractions are the same on each side of � and these tractions are imposed by the fluid pressure inside �, that is 

σn � = pn � on �, (2.12) 

where n � is the normal to �. By this condition, we are basically enforcing that the pore pressure field is continuous across �. On

the other hand, it is natural to assume that the velocity field of the fluid and solid phase is discontinuous across �. If we therefore

introduce the notation [[ w]] := w| �+ − w f | �− to denote the jump of a variable field w across �, the flow type Neumann boundary

conditions will be given as follows: 

n [[ v f − v s ]] · n � = q on �, (2.13) 

where q represents a flux across �. In the applications we can consider the case where such flux is prescribed or the case where

such flux depends on the flow which occurs within the cracks �. An instance of the latter is given, for instance, if we assume a

laminar flow through parallel planar plates to represent the fracture surface. Such condition is next referred to as Poiseuille flow

inside the crack. In this case, we can set 

q = −k d ∇p · t � on �, (2.14) 

where t � is the tangent vector to � and k d is the hydraulic conductivity, given by [42] as k d = (2 h ) 3 / (12 fμ) , where 2 h is the crack

width, μ is the fluid viscosity and f is a coefficient that depends on the crack surface roughness and accounts for the deviations 

from the ideal conditions of laminar flow in an open fracture modelled by the cubic law. The values of f depend on the material

by which the porous media is made of, and are obtained from experimental observations following, for instance, the laboratory

procedure described in [42, page. 1018] . The case of void crack can also be described by this equation and would correspond to

k d → ∞ giving constant pressure along the crack. By combining (2.13) and (2.14) , we obtain therefore the following boundary

condition on �: 

n [[ v f − v s ]] · n � = −k d ∇p · t � on �. (2.15) 

According to this condition, it is assumed therefore that the fluid that enters the cavity diffuses tangentially within the cavity.

As a result, the fluid flow normal to the crack is discontinuous, and consequently is also ∇p . Across � the pore pressure p is

continuous but it is not differentiable. We also note that (2.15) is a special case of oblique derivative boundary condition. 

It is possible also to give more refined models of boundary conditions on �, for instance, by relating q to the behaviour of the

porous media within the crack. For this aspect, we refer to Section 2.6 . 

The complete set of the strong form of the governing equations along with the boundary conditions is given, for convenience,

in Box 1. 

2.5. Weak form of the governing equations 

Starting from the strong form of the equations, we derive the corresponding weak forms. We assume as primary variables the

fields u and p and recall that u can experience discontinuities across � whereas p is continuous across � but it is not differentiable.

As test function for the momentum equations we therefore take functions δu = 0 on ∂ u � and discontinuous across �, whereas 
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Box 1. Strong Form of the Governing Equations.

for the mass balance equation we take scalar functions δp = 0 on ∂ p � and continuous across �. With this choice of the test

functions, we have ∫ 
�

σ : ∇(δu ) d x −
∫ 
∂ t �

t̄ · δu d s −
∫ 
�

pn � · [[ δu ]] d s = 0 

∫ 
�

n 

K f 

∂ p 

∂t 
δp d x + 

∫ 
�

∇ · v s δp d x + 

∫ 
�\ �

∇ · n ( v f − v s ) δp d x = 0 . (2.16)

The weak form of the mass equation is convenient to re-write by applying the divergence theorem on the last term as follows: ∫ 
�\ �

∇ · n ( v f − v s ) δp d x = −
∫ 
�\ �

n ( v f − v s ) · ∇δp d x + 

∫ 
∂ v �

n ( v f − v s ) · n δp d s + 

∫ 
�

[[ n ( v f − v s )]] · n �δp d s , (2.17)

so that the flow type boundary conditions (2.11) and (2.13) can be enforced in the integral over ∂ v � and �, respectively. 

2.6. Averaged flow equation within the cavity and reduction to the boundary 

A more refined model which accounts for the flow within the crack can be obtained by relating the flow q across � originating

in the porous media to the flow within the crack itself. In this model � is seen as an idealised line to which we reduce the flow

within the crack by averaging the flow equations over the width of the cavity. To realise this averaging process, we consider � as

the boundary of a cavity domain �c with a characteristic length L � h , with 2 h the crack width, and make some assumptions on

the variation of the field variables within the cavity. Starting from the weak form of the mass balance within the domain �c , ∫ 
�c 

n 

K f 

∂ p 

∂t 
δp d x + 

∫ 
�c 

∇ · v s δp d x + 

∫ 
�c 

∇ · n ( v f − v s ) δp d x = 0 , (2.18)

after applying the divergence theorem to the last term in (2.18) , we can solve the resulting equation with respect to 
∫ 
�[[ n ( v f −

v s )]] · n � δp d s as follows: ∫ 
�

[[ n ( v f − v s )]] · n � δp d s = 

∫ 
�c 

n 

K f 

∂ p 

∂t 
δp d x + 

∫ 
�c 

∇ · v s δp d x + 

∫ 
�c 

n ( v f − v s ) · ∇δp d x . (2.19)

The term 

∫ 
� n ( v f − v s ) · n � ∇δp d s provides the coupling between the flow within the crack and the flow within the porous

media. 

Let �c =] − h, h [ ×� and denote by ( x ∗, y ∗) a curvilinear coordinate system with x ∗ a curvilinear coordinate along � and y ∗

the coordinate along the normal direction to �. We represent �c within this reference system. Denote then by (v sx ∗ , v sy ∗ ) the

components of v s in such reference system. We assume that p ( x ) is constant across the crack width, i.e. ∂ p/∂ y ∗ = 0 and that v sx ∗
varies linearly along the coordinate axis y ∗. Under these assumptions, we can then integrate along the crack thickness and have ∫ 

�c 

n 

K f 

∂ p 

∂t 
δp d x = 

∫ 
�

∫ h 

−h 

n 

K f 

∂ p 

∂t 
δp d x ∗ d y ∗ = 

∫ 
�

2 hn 

K f 

∂ p 

∂t 
δp d x ∗ ;

∫ 
�c 

∇ · v s δp d x = 

∫ 
�
δp d x ∗

∫ h 

−h 

∂v sx ∗

∂x ∗
d y ∗ + 

∫ 
�
δp d x ∗

∫ h 

−h 

∂v sy ∗

∂y ∗
d y ∗

= 

∫ 
�

(
2 h 

〈
∂v sx ∗

∂x ∗

〉
+ [ v sy ∗ ] 

h 
−h 

)
δp d x ∗;

∫ 
�c 

n ( v f − v s ) · ∇δp d x = −
∫ 
�

2 h k f 
∂ p 

∂x ∗
∂δp 

∂x ∗
d x ∗, (2.20)
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where we have used the notations 〈
∂v sx ∗

∂x ∗

〉
= 

v sx ∗ | �+ + v sx ∗ | �−

2 

and 

[ v sy ∗ ] 
h 
−h = v sy ∗ | �+ − v sy ∗ | �− = [[ v sy ∗ ]] . 

Box 2 summarises the mixed variational form in the variables u and p of the governing equations where we account for the

fluid flow exchange through �. 

Box 2. Weak Form of the Governing Equations.

3. Numerical solution of the hydromechanical coupled problem 

In this section we describe the fully discrete equations of the weak form reported in Box 2. These are obtained by applying

the XFEM for the space discretisation and the backward Euler method for the time discretisation. The enrichment functions are

represented by the Heaviside function to model functions with discontinuity jumps across �; the distance signed function to �

to model functions that are continuous but not differentiable with a discontinuity jump in the normal derivative; and singular

functions to model the 
√ 

r -singularity at the crack tip. For keeping the generality of the treatment, these interpolations are here

considered for both the displacement field u and the pore pressure field p . 

3.1. Space and time discretisation of the coupled problem 

The domain � is discretised into finite elements. For each element the displacement and pore pressure are interpolated by

the shape functions N 

� 
ar and N 

� 
pr , respectively, with the index � referring to the node within the element and the index r referring

to the type of interpolation function. Standard interpolation functions correspond to the index r = 1 , whereas discontinuity

and near tip singularity enrichment functions correspond to the indices r = 2 , 3 , respectively. The nodes are thus grouped in

sets, with I denoting the set of standard finite element nodes, J the set of nodes used to capture the effects of the discontinuity

through the Heaviside step function, and K the set of nodes used for the near tip asymptotic functions. Consequently, we denote

by (a 

i 
1 
, p i 

1 
) the standard displacement and pressure degree of freedom associated with the nodes i ∈ I , by (a 

j 
2 
, p 

j 
2 
) the enriched

degrees of freedom associated with the nodes j ∈ J and by (a 

k 
3 
, p k 

3 
) the additional degrees of freedom associated with the nodes

k ∈ K . The XFEM approximation for the displacement and pressure fields is thus given by 

u (x ) = 

∑ 

i ∈ I 
N 

i 
a 1 (x ) a 

i 
1 + 

∑ 

j∈ J 
N 

j 
a 2 

(x ) a 

j 
2 

+ 

∑ 

k ∈ K 

4 ∑ 

� =1 

N 

k� 
a 3 (x ) a 

k� 
3 

p(x ) = 

∑ 

i ∈ I 
N 

i 
p1 (x ) p i 1 + 

∑ 

j∈ J 
N 

j 
p2 

(x ) p j 
2 

+ 

∑ 

k ∈ K 
N 

k 
p3 (x ) p k 3 , (3.1) 

where the enriched shape functions N 

j 
a 2 

, N 

j 
p2 

, N 

k� 
a 3 

and N 

j 
p3 

are defined in terms of the standard shape functions N 

j 
a 1 

and N 

j 
p1 

as

follows: 

N 

j 
a 2 

(x ) = N 

j 
a 1 

(H(x ) − H(x j )) , 

N 

j 
p2 

(x ) = N 

j 
p1 

(Z(x ) − Z(x j )) , 

N 

k� 
a 3 (x ) = N 

k 
a 1 (F � (x ) − F � (x k )) for � = 1 , . . . , 4 , 

N 

k 
p3 (x ) = N 

k 
p1 (G (x ) − G (x k )) , (3.2) 

where H denotes the Heaviside step shape function centred at the discontinuity and Z is the signed distance functions of x to �,

given by, respectively, 

H = 

{
1 if x ∈ �+ ;
−1 if x ∈ �−. 

Z = 

{
dist ( x ;�) if x ∈ �+ ;
−dist ( x ;�) if x ∈ �−, 

(3.3) 
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with dist (x ; �) = inf {| x − y | : y ∈ �} , whereas F � , � = 1 , . . . , 4 , and G are the enriched tip basis, defined as 

{ F � (r, θ ) } 4 � =1 = { √ 

r cos θ/ 2 , 
√ 

r sin θ/ 2 , 
√ 

r sin θ/ 2 sin θ, 
√ 

r cos θ/ 2 sin θ} 
G (r, θ ) = 

√ 

r sin θ/ 2 , (3.4)

with ( r, θ ) the local polar coordinates of x ∈ ��� at the crack tip. The XFEM displacement, pressure and corresponding gradient

are therefore represented as follows: 

u = N a 1 a 1 + N a 2 a 2 + N a 3 a 3 p = N p1 p 1 + N p2 p 2 + N p3 p 3 

∇u = B a 1 a 1 + B a 2 a 2 + B a 3 a 3 ∇p = B p1 p 1 + B p2 p 2 + B p3 p 3 , (3.5)

where we have denoted by a 1 = (a i 
1 
) i ∈ I , a 2 = (a 

j 
2 
) j∈ J , a 3 = (a k 

3 
) k ∈ K and p 1 = (p i 

1 
) i ∈ I , p 2 = (p 

j 
2 
) j∈ J , p 3 = (p k 

3 
) k ∈ K the set of all

standard and enriched displacement and pressure degrees of freedom, respectively, and B ar = ∇N ar and B pr = ∇N pr , for r =
1 , 2 , 3 , denote the gradient of the standard and enriched shape functions of the displacement and pressure fields, respectively.

Correspondingly, we have 

v s = N a 1 ˙ a 1 + N a 2 ˙ a 2 + N a 3 ˙ a 3 ∇ · v s = m 

T (B a 1 a 1 + B a 2 a 2 + B a 3 a 3 ) 

˙ p = N p1 ˙ p 1 + N p2 ˙ p 2 + N p3 ˙ p 3 ∇ 

˙ p = B p1 ˙ p 1 + B p2 ˙ p 2 + B p3 ˙ p 3 , (3.6)

which, replaced into the weak form of the governing equations (see Box 2), leads to the following coupled system of equations: ∫ 
�

B 

T 
ar σ d� + 

∫ 
�

pN 

T 
ar n � d x ∗ −

∫ 
∂ t �

N 

T 
ar ̄t d x ∗ = 0 

∫ 
�

N 

T 
pr ∇ · v s d� + 

∫ 
�

N 

T 
pr 

∂ p 

∂t 

1 

K f 

d V −
∫ 
�

B 

T 
pr w d� + 

∫ 
�

N 

T 
pr [[ w]] · n d x ∗ + 

∫ 
∂�

N 

T 
pr ̄v d x ∗ = 0 , (3.7)

for r = 1 , 2 , 3 , which can be written in matrix form as 

C ˙ x + Kx + f = 0 , (3.8)

where x T = [ a 1 , a 2 , a 3 , p 1 , p 2 , p 3 ] is the vector of nodal unknowns whereas the matrices C , K and f are given in Appendix A . 

3.2. Time discretisation 

The discrete equation (3.8) represents a system of ordinary differential equations which we discretise in time using the back-

ward Euler scheme, that is, 

F n +1 = C n +1 

x 


t 
+ K n +1 x n +1 + f n +1 = 0 , (3.9)

where 
x = x n +1 − x n and 
t = t n +1 − t n , whereas ( x n +1 , x n ) denote the unknowns at time t n +1 and t n , respectively. Since the

matrices C n +1 and K n +1 are full, the resulting algebraic system of equations is fully coupled. 

4. Semianalytical solution of the flow problem in porous cracked problem 

In this section we review briefly the method of solution of the 2 d steady-state flow in a fractured porous media using the

complex potential method [4,5,7] specialised for different boundary conditions on �. The application of this method and the

enforcement of the boundary conditions on � transform the original Laplace equation into a singular integral equation of the

first kind which is then solved numerically using a collocation method and numerical quadrature [6] . 

4.1. General analytical solution of the problem 

We consider an isotropic saturated porous infinite domain � that contains a linear discontinuity � modelled by a segment.

We assume that � is subject to a steady-state flow q ∞ 

which is inclined of an angle β with respect to the direction of the

rectilinear crack �, see Fig. 2 . Under the assumption of steady-state flow, the poroelasticity equations in Box 1 uncouple in the

Laplace equation for the pore pressure 

∇ · ∇p = 

∂ 2 p 

∂x 2 
+ 

∂ 2 p 

∂y 2 
= 0 for (x, y ) ∈ � \ � (4.1)

and in the equations of linear elasticity for the effective stress. The general solution of (4.1) can then be expressed in terms of the

Goursat–Muskhelishvili potential function [4] . If we denote by ˆ x = x + iy the complex variable with ( x, y ) ∈ � and assume 

p( ̂  x ) = 2 Re (�( ̂  x )) , (4.2)

with �( ̂  x ) of the following form: 

�( ̂  x ) = 

q ∞ 

2 

ˆ x e −iβ + �̄( ̂  x ) , (4.3)

where �̄ = �̄( ̂  x ) is an analytic function in ��� and singular on �, it is not difficult to show that (4.2) is solution of (4.3) in ���.

The specific choice of �̄( ̂  x ) depends on the boundary conditions to meet on �. We consider here the case where a prescribed

pressure is given along �, see Fig. 3 a, and a prescribed Poiseuille flow is given along �, see Fig. 3 b. 
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q

Fig. 2. Single crack in an infinite plate. Definition of the notation. Distance of each point t ∈ � on the crack to a point ̂  x = x + iy ∈ �. 

q = 0

q = 0

q = 0

x

y

ba

q = A

y

x

a b

Fig. 3. Single crack in an infinite plate: ( a ) subjected to constant pressure p 0 , and ( b ) subjected to constant flow q ∞ at the infinity. 

 

 

 

 

 

 

4.1.1. Prescribed pressure inside the crack 

For this case, we can consider the following representation of the potential function [4,5] 

�̄( ̂  x ) = 

1 

2 π

∫ 
�

φ(t) 

t − ˆ x 
dt (4.4) 

with φ( t ) an unknown density function integrable and continuous on � which must be found by enforcing the condition that

p( ̂  x (t)) = p 0 (t) for t ∈ �, where p 0 ( t ) is a prescribed variation of the pressure along �. The potential �̄ is an integral of Cauchy

along �, it is analytic in ��� and approaches zero for large values of | t − ˆ x | . By combining (4.4), (4.3) and (4.2) we have 

p( ̂  x ) = q ∞ 

Re ( ̂  x e −iβ ) + 

1 

π

∫ 
�

φ(t) 

| t − ˆ x | dt ˆ x ∈ � \ �, t ∈ �, (4.5) 

so that the right specification of φ( t ) is obtained by solving the following singular integral equation: 

q ∞ 

Re (t 0 e 
−iβ ) + 

1 

π

∫ 
�

φ(t) 

| t − t 0 | dt = p 0 (t 0 ) t 0 ∈ �. (4.6) 

4.1.2. Prescribed Poiseuille flow inside the crack 

For this case we have the following representation of the potential function [4,5] 

�̄( ̂  x ) = 

∫ 
�
φ(t) ln ( ̂  x − t) dt , (4.7) 

with φ( t ) the unknowns density function integrable and continuous on � to be found by enforcing the Neumann boundary

condition on � expressing the condition of a Poiseuille flow inside the crack, i.e. condition (2.14) . In order to enforce (2.14) , it is

more convenient to express the complex potential � of (4.3) in terms of the flow q inside the cavity. To do so, we express first

φ( t ) as follows (see Appendix B for the details of the derivation) 

φ(t) = 

1 

2 πk f 

∂q 

∂x ∗
. (4.8) 

Now, by combining (4.8) with (4.7) and replaced first in (4.3) and then in (4.2) , we have the following representation of the

fluid pressure: 

p( ̂  x ) = q ∞ 

Re ( ̂  x e −iβ ) + 

1 

πk f 

∫ 
�

∂q 

∂x ∗
ln | ̂  x − t| dt for ˆ x ∈ � \ �, t ∈ �. (4.9) 
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Now (2.14) can also be written as 

∂ p 

∂x ∗
= −q (t) 

k d 
for t ∈ �, (4.10)

so that by integrating over �, we have 

p(t 0 ) − p(0) = −
∫ t 0 

0 

q (t) 

k d 
dt for t 0 ∈ �. (4.11)

By replacing thus (4.9) into (4.11) we are led to the problem of finding q ( t ) for t ∈ � which solves the following singular

integral equation: 

q ∞ 

Re (t 0 e 
−iβ ) + 

1 

πk f 

∫ 
�

∂q (t) 

∂x ∗
ln | t 0 − t| dt = −

∫ t 0 

0 

q (t) 

k d 
dt t 0 ∈ �, (4.12)

where we have assumed that p(0) = 0 . 

4.2. Numerical solution of the integral singular equations 

For the numerical solution of the singular integral equations (4.6) and (4.12) , we use the methods proposed in [6] where,

however, an appropriate quadrature formula must be chosen depending on the type of singularity at the end points a and b .

At the points of geometrical singularity a and b , the function φ can indeed be either bounded or have an integrable singularity,

and this depends on the physical arguments of the problem. When the unknown function is the pore pressure potential, as is

usually the case, φ is bounded at the points a and b . For this case, then [6] suggest the Gauss–Chebyshev quadrature formula

where the points of integration t j ∈ �, j = 1 , . . . , N, are the zeros of the Chebyshev polynomial of the first kind of degree N

whereas the collocation points t 0 i ∈ �, i = 1 , . . . , N + 1 , where the pore pressure p must be evaluated, are the zeros of the

Chebyshev polynomial of second kind of degree N + 1 . 

Denoting by w ( x ∗) the fundamental solution of the singular integral equation [4] , and g ( x ∗) a bounded function, continuous

in [ a, b ], we can write φ( x ∗) as follows 

φ(x ∗) = w (x ∗) g(x ∗) , a < x ∗ < b. (4.13)

A numerical method for the determination of g ( x ∗) will be developed in the following subsection for both Dirichlet and

Neumann boundary conditions. The values of the function φ are then determined at some specific nodes, as solution of a system

of linear equations. 

4.2.1. Prescribed pressure inside single crack 

In this case q ∞ 

= 0 and the pressure distribution inside the crack p 0 ( t 0 ) is known for every t 0 ∈ �. Thus (4.6) becomes 

p 0 (t 0 ) = 

1 

π

∫ 
�

φ(t) 

| t − t 0 | dt. (4.14)

To evaluate the pore pressure p at ̂  x ∈ �, we need to compute first the unknown density φ on � so that (4.14) is satisfied along

the crack. Following [5,6] we solve the singular integral equation (4.14) using the collocation method and Gauss quadraturae.

That is, we enforce (4.14) at a discrete set of collocation points t 0 i ∈ �, with i = 1 , . . . , N + 1 , and then solve by Gauss-Chebyshev

quadratures, using the set of integration points t j ∈ �, with j = 1 , . . . , N, the integral appearing in (4.14) evaluated at the collo-

cation points. In this manner, we obtain a of N + 1 linear equations, one equation for each collocation point, is obtained which

reads as follows: 

p 0 ( t 0 i ) = 

1 

π

N ∑ 

j=1 

w j g j 

| t j − t 0 i | , i = 1 , . . . , N + 1 , (4.15)

where 

w j = w (t j ) = 

π

N + 1 

sin 

2 

(
jπ

N + 1 

)
. 

Each equation in (4.15) depends on the N unknowns g j = g(t j ) given by the value of g at the integration point j , for j = 1 , . . . , N.

As a result, (4.15) appears as a system overdetermined of N + 1 equations in N unknowns, which we solve following [5,6] that

suggest to choose N to be an even integer and drop the equation N/ 2 + 1 . 

The fundamental function w j has been selected in such a way that the corresponding weight function and t j correspond to

the zeros of the orthogonal polynomials related to the particular Gaussian quadrature. For the case of integrable singularities

at the end points, the orthogonal polynomials reduce to the Chebyshev polynomials of first kind, thus the collocation and the

integration points in the range [ a , b ] that represents the crack �, will be given by 

t j = 

b − a 

2 

ζ j + 

b + a 

2 

j = 1 , . . . , N 

t 0 i = 

b − a 
ηi + 

b + a 
i = 1 , . . . , N + 1 , (4.16)
2 2 
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where ζ j are the roots of the Chebyshev polynomials of second kind of order N , whereas ηi are the roots of the Chebyshev

polynomials of the first kind of order (N + 1) in the interval [ −1 , 1] . The points ζ j and ηi are thus given as follows [6] : 

ζ j = cos 

(
jπ

N + 1 

)
, j = 1 , . . . , N 

ηi = cos 

(
π(2 i − 1) 

2(N + 1) 

)
, i = 1 , . . . , N + 1 . (4.17) 

Once g j , j = 1 , . . . , N, are computed, the pressure and the gradient of the pressure in the entire domain � can be evaluated at

any point ˆ x ∈ � \ � as follows: 

p 
(

ˆ x 
)

= 

1 

π

n ∑ 

j=1 

w j g j 

| t j − ˆ x | 

∇ ˆ x p 
(

ˆ x 
)

= 

1 

2 

( 

∂ p 
(

ˆ x 
)

∂x 
− i 

∂ p 
(

ˆ x 
)

∂y 

) 

= 

1 

2 π

n ∑ 

j=1 

w j g j 
cos α

(
t j , ̂  x 

)
| t j − ˆ x | 2 − i 

1 

2 π

n ∑ 

j=1 

w j g j 
sin α

(
t j , ̂  x i 

)
| t j − ˆ x i | 2 , 

(4.18) 

where α is the angle formed by the vector t j ̂  x and the axis O ̂ x . The full algorithm of the numerical integration scheme of the

semianalytical solution is summarised in Box 3. 

4.2.2. Prescribed Poiseuille flow inside the crack 

Let us now consider the case of the single straight crack �, as shown in Fig. 2 , in an infinite fully saturated porous medium

subjected to a uniform pressure gradient ( A , 0), parallel to the crack �. The pressure field at infinity is then of the form p ∞ 

( ̂  x ) =
2 Re (q ∞ ̂

 x e −iβ/ 2) = A x where x = Re ( ̂  x ) is the real part of ˆ x . Consider now � parameterised by the curvilinear coordinate x ∗ ∈
[ −1 , 1] . By integrating by parts the integral over � which appears in (4.9) , we obtain 

p( ̂  x ) = A x + 

k d 
2 πk f 

∫ 1 

−1 

∂ p 

∂x ∗
ˆ x − x ∗

| ̂  x − x ∗| 2 · t �(x ∗) dx ∗, (4.19) 

where t �( x ∗) is the unit tangent vector at � at x ∗ ∈ �, and we have taken into account of (4.10) and used the condition that

q (1) = q (−1) . Let us assume the global Cartesian coordinate system with origin at the middle of the crack � and the x − axis along

the crack. By the symmetry of the geometry and boundary conditions, we can infer that p(−x, y ) = −p(x, y ) , ∂ p(−x, y ) /∂x ∗ =
−∂ p(x, y ) /∂ x ∗ and p(0 , 0) = 0 . As a result, at x 0 ∈ � = [ −1 , 1] , the pressure can be expressed as follows: 

p(x 0 , 0) = 

∫ x 0 

0 

∂ p 

∂x ∗
dx ∗. (4.20) 

By combining (4.19) and (4.20) , and taking into account of the symmetry of the pore pressure distribution along the crack, we

are led to the problem of finding the function ∂ p / ∂ x ∗ defined on [0, 1] such that for any x 0 ∈ [0, 1] there holds ∫ x 0 

0 

∂ p 

∂x ∗
d x ∗ − k d 

πk f 

∫ 1 

0 

(
∂ p(x ∗) 
∂x ∗

− ∂ p(x 0 ) 

∂x ∗

)
x 0 

x ∗2 − x 2 
0 

d x ∗ − k d 
2 πk f 

∂ p(x 0 ) 

∂x ∗
ln 

1 − x 0 
1 + x 0 

= Ax 0 . (4.21) 

In order to solve (4.21) , also here we apply the method of the fundamental solutions [4] , and look for a solution in the form

∂ p/∂ x ∗ = w (x ∗) g(x ∗) , with g ( x ∗) a bounded continuous function in [ −1 , 1] and w ( x ∗) the fundamental solution of the singular

integral equation [4] . By replacing therefore ∂ p/∂ x ∗ = w (x ∗) g(x ∗) into (4.21) , we are led to the problem of finding for any x 0 ∈
[0, 1] the value of g ( x 0 ) such that there holds ∫ x 0 

0 

w (x ∗) g(x ∗) dx ∗ − k d x 0 
πk f 

∫ 1 

0 

w (x ∗) g(x ∗) − w (x 0 ) g(x 0 ) 

x ∗2 − x 2 
dx ∗ − k d 

2 πk f 
w (x 0 ) g(x 0 ) ln 

1 − x 0 
1 + x 0 

= Ax 0 , (4.22) 

0 

Fig. 4. Integration points x i , i = 1 , . . . , N + 1 and collocation points x 0 j , j = 1 , . . . , N along the crack for N = 3 . 
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Box 3.  Numerical integration algorithm for the semianalytical solution with prescribed pressure on Γ. 

where the singularities at the end points have been removed. We solve numerically the singular integral equation (4.22) by

enforcing (4.22) to hold at the collocation points x 0 i ∈ �, i = 1 , . . . , N + 1 , and then by solving the integral in (4.22) by Gauss-

Chebyshev quadraturae. If we therefore denote by x j , j = 1 , . . . , N the integration points on � (see Fig. 4 ), we have then to solve

the following system of linear equations in g j = g(x j ) , j = 1 , . . . , N, 

i ∑ 

j=1 

w j g j −
x 0 i k d 
πk f 

( 

N ∑ 

j=1 

w j g j − w i g 0 i 

x 2 
j 
− x 2 

0 i 

) 

− k d 
2 πk f 

w i g 0 i ln 

1 − x 0 i 
1 + x 0 i 

= A x 0 i for i = 1 , . . . , N + 1 , (4.23)

where w i = x 0 i − x 0(i −1) [5] . If we set 

B i j = w j −
k d 

πk f 
T i j if j < i 
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Table 1 

Poroelastic properties of the model problem of 

Examples 5.1 and 5.4. 

Young modulus, E [GPa] 30 

Poisson coefficient, ν 0.2 

Water compressibility modulus, K f [GPa] 1 · 10 18 

Biot’s coefficient b 1 

Bulk permeability coefficient, k f [cm/s] 1 

lx = 6

ly = 6

x

y
a

b

Fig. 5. ( a ) Geometry and boundary conditions of the model problem of Example 5.1 . ( b ) Finite element mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B ii = 

1 

2 

w j −
k d 

πk f 

N ∑ 

k =1 

T ik −
k d 

2 πk f 
g 0 i ln 

1 − x 0 i 
1 + x 0 i 

if i = j 

B i j = − k d 
πk f 

T i j if j > i , 

with T i j = 

w j x 0 i 

x 2 
j 
−x 2 

0 i 

when i � = j , and T ii = 0 when i = j, then it is not difficult to show, after some rearrangements, that (4.23) can be

rewritten as follows: 

N ∑ 

j=1 

B i j g j − Ax 0 i = 0 for i = 1 , . . . , N + 1 . (4.24) 

The solution of (4.24) allows the evaluation of the pressure at any point ˆ x ∈ � using (4.22) , whose discrete expression is given

as follows 

p( ̂  x ) = A Re ( ̂  x ) + 

k d 
2 πk f 

N ∑ 

j=1 

w j g j 

(
x j − ˆ x 

| x j − ˆ x | 2 −
x j + 

ˆ x 

| x j + 

ˆ x | 2 
)

· t �(x j ) , (4.25) 

where x j ∈ � for j = 1 , . . . , N are the integration points of the Gauss-Chebyshev quadrature scheme . The complete algorithm is

reported in Box 4. 

5. Numerical examples 

This section contains four examples that illustrate the performance of the XFEM for modelling the hydromechanical behaviour

of a porous media � with an interior interface �. In the first two examples, we consider steady state flow and compare the XFEM

results against the semianalytical ones, assuming Dirichlet and Neumann boundary conditions on the interface �, respectively.

In the third example, we validate our XFEM flow model against experimental observations on the permeability coefficient for

different sam ple widths. In the last exam ple, finally, we analyse a fully hydromechanical coupled problem to assess the influence

of the flow pressure on the crack width for different ratios of the porous medium permeability to the crack permeability. 

5.1. Prescribed pressure inside the crack 

This example and the next one contain model problems where we assume steady-state flow and we solve by the XFEM and

the semianalytical method. The objective is to verify the quality of the XFEM solution. Geometry and boundary conditions of

the model problem of the first example are shown in Fig. 5 along with the finite element mesh used for the numerical results.

The domain � is a square shaped body of fully saturated porous material with a straight crack � at its interior. The crack � is

placed at the centre of the specimen and parallel to one of its sides. We assume drained conditions with zero pressure along the

whole boundary ∂�, and drained conditions also along � with pressure p̄ = 1 . No mechanical load is applied and displacement

boundary conditions are introduced to remove rigid body motions. The mechanical properties of the block are given in Table 1 . 
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The finite element mesh used for the simulation contains 480 quadrilateral elements with 20 elements along the x − direction

and 24 elements along the y − direction so to have the crack � intersecting the middle of each element. Quadratic shape functions

have been used for the interpolation of the displacement field and bilinear shape functions for the interpolation of the pressure 

Box 4. Numerical integration algorithm for the semianalytical solution of Poiseuille flow inside the crack.
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a b

Fig. 6. Pressure field distribution computed with ( a ) the XFEM and ( b ) the semianalytical method. 

a b

Fig. 7. Comparison of the semianalytical and XFEM solution. Variation of ( a ) ∂ p / ∂ x along y = 2 . 7 and of ( b ) ∂ p / ∂ y along y = 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

field. For the integration of the discontinuous and singular shape functions, the number of Gauss integration points used in the

enriched elements was 36 in the enriched elements which were not intersected by the crack � and was 100 in the enriched

elements which were intersected by the crack. 

The semianalytical solution has been obtained by applying the algorithm described in Box 3 using N = 92 integration points

and the boundary condition at the infinity p ∞ 

= 0 and p̄ = 1 on �. The order N of the Chebyshev polynomial has been chosen

after comparing the semianalytical solution computed for different values of N . The pressure distribution in � obtained with the

XFEM and the semianalytical method are displayed in Fig. 6 where, compared to the XFEM solution, the semianalytical solution

presents a higher gradient near the interface. The enrichment of the pressure field by the distance function does not seem to

improve the numerical approximation close to the crack given that the XFEM pressure gradient results tailored according to the

distance gradient. To gain further insight on the flow near the crack, Fig. 7 ( a ) and ( b ) display the variation of ∂ p / ∂ x along y = 2 . 7

and of ∂ p / ∂ y along y = 3 , respectively. In both the variations, the XFEM solution presents higher gradient values away from the

discontinuity. As for the variation of ∂ p / ∂ x along y = 2 . 7 which is not exactly on the crack, we observe a change of sign at x = 3

for the semianalytical solution and zero tangential flow for both the solutions, though the XFEM solution presents zero tangential

flow along the whole crack. In the porous matrix and very close to the crack tips, both the XFEM and the semianalytical solution

are able to capture the crack tip singularity with a change of sign indicating that the fluid flows in opposite directions. As for the

variation of ∂ p / ∂ y along y = 3 , which is used to compute the fluid that flows into the cavity, the XFEM solution presents a hat

shape at the crack tips which is not displayed by the semianalytical solution. The semianalytical solution presents furthermore

its maximum flow at the center of the crack and approaches to zero at the crack tips at variance of the behaviour displayed by

the XFEM solution. 

To analyse the quality of the XFEM approximation, several computations have been performed on meshes designed accord-

ing to the remeshing strategy shown in Fig. 8 . Fig. 9 shows the variation of the relative errors ‖ p − p re f ‖ L 2 (�) / ‖ p re f ‖ L 2 (�) ,‖ ∂ p/∂ x − ∂ p re f /∂ x ‖ L 2 (�) / ‖ ∂ p re f /∂ x ‖ L 2 (�) and ‖ ∂ p/∂ y − ∂ p re f /∂ y ‖ L 2 (�) / ‖ ∂ p re f /∂ y ‖ L 2 (�) with respect to the number of finite

elements. The symbol ‖ p‖ L 2 (�) denotes the L 2 norm of the field p , i.e. ‖ p‖ L 2 (�) = 

√ ∫ 
� | p| 2 dx , whereas the reference value p ref 

is an approximation of the exact solution taken as the XFEM solution of a very fine mesh of about 80 0 0 elements (corresponding

to the finite element mesh of 79 × 96 elements). The inspection of the convergence plots shows that XFEM solutions with an

accuracy of at least 5% can be obtained with already few finite elements. The computation times obtained using an Intel Core i7

are given in Table 2 where one can appreciate that the computation is quite fast, given that in the case of steady-state flow, one

is faced with the solution of a Laplacian equation where the major cost of the computation is given by the construction of the

stiffness matrix of the enriched elements. 
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Fig. 8. Remeshing strategy. 

Fig. 9. Plots of the relative error of the pressure and of the fluid flow for different finite element meshes. 

Table 2 

CPU time with an Intel Core i7-4510U@2.00 GHz. 

N x × N y Number of elements Computation time [ s ] 

12 × 10 120 10 

24 × 20 480 26 

36 × 30 1080 34 

48 × 40 1920 52 

60 × 50 30 0 0 60 

Fig. 10. ( a ) Geometry and boundary conditions of the model problem with Poiseuille flow inside the crack of Example 5.2 . ( b ) Finite element mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Poiseuille flow inside the crack 

As second model problem to verify the XFEM solution, we consider the case of a prescribed Poiseuille flow inside the crack �.

In this case, the boundary condition on the interface � is given by (2.14) . The geometry and boundary conditions are displayed in

Fig. 10 along with the finite element mesh used for the computations. The domain � is a rectangular shape body fully saturated

with the straight crack � parallel to the axis y and starting on the boundary ∂� of �. We assume drained boundary conditions

with zero pressure on the edge y = 0 and pressure p = 4 on the edge y = 4 . On the lateral faces, i.e. the edges x = 0 and x =
6 , we assume impermeable boundary conditions, i.e. the fluid is not allowed flowing normal to the boundary, i.e. the normal

component v̄ of the velocity is zero on such edges. Also in this case, no mechanical load is applied and displacement boundary

conditions are introduced to remove the rigid body motions. The mechanical properties of the block are the same as the ones of

the previous example and are given in Table 1 as well. 

The XFEM solution has been obtained using the finite element mesh displayed in Fig. 10 , with quadratic shape functions

for the interpolation of the displacement field and bilinear shape functions for that of the pressure field. We have then used

36 Gauss integration points in all the enriched finite elements. As for the semianalytical solution, this has been obtained by

applying the algorithm described in the Box 4, using N = 60 integration points as order of the polynomial of Chebyshev, and

taking p (0 , y ) = 0 and p ∞ 

= x as boundary conditions. 
0 
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a b

Fig. 11. Pressure field distribution for λ = 1 . ( a ) Semianalytical solution and ( b ) XFEM solution. 

Fig. 12. Comparison of the semianalytical and XFEM solution. Variation of the pressure along the crack for different values of λ = k d / (2 πk f L ) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the analysis of the results, it is convenient to introduce the following dimensional parameter 

λ = k d / (2 πk f L ) , 

with L the crack length, which measures the ratio of permeabilities of the porous media surrounding the crack and the one of the

crack. A higher value of λ means that the fracture has a permeability higher than that of the surrounding porous medium and

the fluid has therefore a tendency to flow in the fracture and then along the crack. As opposite, a low value of λ means that the

crack has a lower permeability, and the fluid will tend to avoid the crack which behaves as a barrier. The simulations have thus

been carried out considering three different values of λ, a high one λ = 1 , an intermediate one λ = 0 . 1 and a low one λ = 0 . 01 . 

The pressure distributions in � obtained with XFEM and the semianalytical method, assuming λ = 1 , are displayed in Fig. 11 ,

where also in this example we observe that the semianalytical solution presents a higher gradient near the interface than the

XFEM solution. The pressure distribution in the crack as obtained by both methods are displayed in Fig. 12 for the said different

values of λ. We observe that in the case of λ = 1 , thus for high permeability of the cavity, both the semianalytical solution and

the XFEM solution give a constant value of the pressure in the cavity, which in the example is equal to zero, consistently with the

value prescribed by the boundary condition. For low permeability of the crack, corresponding to low values of λ, the pressure

appears to be not affected by the presence of the crack. Figs. 13 and 14 display the variation of the pressure gradient components

∂ p / ∂ x and ∂ p / ∂ y along lines parallel to the crack, respectively, so that we can get an insight on how the flow is influenced by the

presence of the crack under the boundary conditions that we are here examining. Since ∂ p / ∂ y is related to the crack’s tangential

flow, a high permeable crack implies that the tangential flow is almost zero in the discontinuity, and the fluid thus flows almost

entirely in the normal direction to the crack, whereas for a low permeable crack, the flow is unidirectional along y direction, and

the flow normal to the crack is zero. Such behaviours are captured by both the XFEM solution and the semianalytical solution.

From the diagram shown in Fig. 14 we observe, however, that the normal flow computed with the semianalytical method has a

maximum at L /2 as opposite to the XFEM solution which has its maximum at the crack tip. 
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Fig. 13. Comparison of the semianalytical and XFEM solution. Variation of the pressure gradient component normal to the crack, ∂ p / ∂ y , along x = 2 . 7 for different 

values of λ. 

Fig. 14. Comparison of the semianalytical and XFEM solution. Variation of the pressure gradient component tangential to the crack, ∂ p / ∂ x , along the crack at 

x = 3 for different values of λ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3. Permeability test 

Transport properties of a porous media, such as the water absorption, capillary absorption, water penetration and water

permeability coefficient, can be assessed by different tests that can be used to characterise the internal structure of a porous

material. In this example we simulate the determination of the water permeability coefficient of a cement mortar specimen

using the constant head test method. The test was carried out using cement mortar cylinders with a vertical slot placed in its

centre. For the casting of the specimens, molds with diameter 100 mm and height 50 mm were used and X-Ray sheets were

introduced during the molding to produce cracks with known value of the width. The X-Ray sheets had T h = 0 . 02 mm thick and

H = 50 mm height and four different widths w h were considered: 10 mm , 20 mm , 30 mm and 40 mm . To ensure that the flow

was axial, the molded cylindrical specimens were painted with waterproof paint. The permeability test consisted in applying

a low pressure at the upper face and in holding constant the hydraulic head. When flow reached the steady state conditions,

the outflow through the sample was then regularly measured to compute a global permeability coefficient. We refer to [2] for a

detailed description of the experimental setup. The model problem for the XFEM is shown in Fig. 15 ( b ). The geometrical domain

was discretised using 456 quadrilateral finite elements with biquadratic shape interpolation functions for the displacement and

bilinear shape functions for the pressure. The number of integration points in the enriched finite elements was taken equal to

100. The poroelastic properties of the cement mortar specimen are given in Table 3 . 

For the fluid flow inside the discontinuity, two values of the rugosity coefficient were used, f = 1 . 05 and f = 1 . 65 , whereas

the water dynamic viscosity was μ = 1 · 10 −7 Ns/cm 

2 . With these data, the hydraulic conductivity of the crack was then computed
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Fig. 15. Permeability test: ( a ) Experimental setup; ( b ) Geometry and boundary conditions of the model problem of Example 5.3 . 

Table 3 

Poroelastic properties of the cement mortar specimen of 

Example 5.3. 

Young modulus, E [GPa] 11 

Poisson coefficient, ν 0.2 

Water compressibility modulus, K f [GPa] 1 · 10 18 

Biot’s coefficient α 1 

Bulk permeability coefficient, k f [cm/s] 1 · 10 −10 

Fig. 16. Permeability test: comparison of the XFEM results and the experimental ones obtained for different crack widths as in [2] . 

Fig. 17. ( a ) Geometry and boundary conditions of the model problem of Example 5.4 . ( b ) Finite element mesh. 

 

 

 

 

 

 

by means of the equation k d = 4 h 2 / (12 fμ) assuming the cubic law for fluid flow between two parallel plates [42] as discussed

in Section 2.4 . 

As for the boundary conditions, the specimen was impermeable along the lateral surface, whereas drained conditions were

assumed on the two basis, with the pressure on the upper face given by p = γ h with h = 30 cm and γ the unit weight of the

water, whereas on the lower face p = 0 . Fig. 16 displays the numerical results for the permeability coefficient as obtained by the

XFEM, compared to the experimental ones obtained in [2] . One can appreciate generally a good agreement. 

5.4. A fully coupled problem 

In this example we study the model problem of Fig. 17 where we do not make anymore the assumption of steady-state flow

conditions, so that we need to solve the fully coupled equations (3.9) . An objective of this example is to analyze the effects of the
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Fig. 18. Pressure field obtained by the XFEM solution for: (a) λ = 0 . 01 , (b) λ = 0 . 1 and (c) λ = 1 . 

Fig. 19. XFEM solution. Variation of the pressure along the crack for different values of λ. 

Fig. 20. Variation of ∂ p / ∂ x along x = 3 for different values of λ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

flow on the opening of the crack for different values of λ, i.e. for different values of the ratio of permeability of the porous medium

surrounding the crack and the permeability of the crack. The geometry of the problem is the same as the one considered in the

Example 5.1 , being different now the boundary conditions. These are given by the drained conditions on the edges y = 0 and

y = 6 with constant value of the pressure equal to p = 0 and p = 6 , respectively, impermeable lateral edges, and no prescribed

condition is assigned on the interface �. The poroelastic material properties are the same as the one of Example 5.1 and are

given in Table 1 . The finite element mesh used for computing the XFEM solution is also the same as the one employed in the

Example 5.1 , taking here as well the same number of Gauss integration points in the enriched finite elements. 

Fig. 18 ( a ), ( b ) and ( c ) show the pressure distribution calculated for different values of λ. Likewise the Example 5.2 , also here we

observe a different pressure distribution in the neighbourhood of the crack according to the value of λ. More specifically, for low

values of λ, the pressure distribution seems not to be affected by the presence of the crack, whereas for higher values, although

the flow is unidirectional and parallel to the direction of the crack, the pressure in the surrounding of the crack is modified.

This behaviour can be better appreciated in Fig. 19 , which displays the pressure distribution along the crack for different values

of λ. So, for instance, we note that for λ = 0 . 01 , i.e. for the case of a high permeable porous medium compared to the crack

permeability, the pressure in the crack presents a hydrostatic like variation. 

To analyse the changes on the fluid flow, we plot the variation of the components ∂ p / ∂ x and ∂ p / ∂ y of the pressure gradient

in Fig. 20 and Fig. 21 , respectively. In particular, Fig. 20 displays the variation of ∂ p / ∂ x , i.e. the normal flow to the crack, along the

crack at x = 3 . We observe that for a low value of λ, ∂ p / ∂ x is zero and therefore there is no fluid that flows normal to the crack. If
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Fig. 21. Variation of ∂ p / ∂ y along x = 3 for different values of λ. 

Fig. 22. Zooms showing the crack opening produced by the fluid flow for different values of λ: ( a ) COD = 0 . 053 mm for λ = 0 . 01 , ( b ) COD = 0 . 078 mm for λ = 0 . 1 

and ( c ) COD = 0 . 207 mm for λ = 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we increase the permeability, a normal component of flow appears. Fig. 21 shows the variation of ∂ p / ∂ y along the crack as well.

Here we observe that for low values of λ, ∂ p / ∂ y is equal to one whereas for higher values of λ, the flow increases towards the two

crack tips and presents the same sign and therefore same direction of flow. However, we note that the value of the flow decreases

along the crack. This means that for higher values of λ, the flow along the crack is almost stopped and therefore the fluid leaves

or enters normally to the crack. This behaviour also explains the major tendency that has the fluid to open the crack for higher

values of λ. To confirm this fact, we display in Fig. 22 zooms of the crack region with the location of the Gauss points, where we

can appreciate the higher values of the Crack Opening Displacement (COD) for higher values of λ. More precisely, we have that

COD = 0 . 053 mm for λ = 0 . 01 , COD = 0 . 078 mm for λ = 0 . 1 and COD = 0 . 207 mm for λ = 1 . 

To analyse finally the dependency of the results on the mesh discretisation, we plot in Fig. 23 (a) and (b) the COD and the

relative error with respect to the number of elements used in the XFEM computation for λ = 1 , and assuming as reference

values those associated with the XFEM solution obtained with the mesh of 79 × 96 elements. We observe that the COD assumes

the value of 0.28 mm with an accuracy of 5% with already few finite elements (value corresponding to the mesh of 19 × 24

elements). Table 4 reports then the CPU time with an Intel(R) Core(TM) i7-4510U CPU@2.00 GHz and 16 GB RAM and the COD

for the different finite element meshes used in the computations for λ = 1 , showing in general, that the computations are quite

fast in 2 D . 

6. Conclusions 

In this paper we have proposed a numerical model of the hydromechanical behaviour of a porous linear elastic fractured

medium which is built upon the XFEM and the reduced model of the fluid flow in thin cracks modelled individually. In the
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ba

Fig. 23. XFEM results for λ = 1 : ( a ) Relative error of the pressure and gradient of pressure for different number of finite elements; ( b ) Crack opening displacement 

for different number of finite elements. 

Table 4 

XFEM results for λ = 1 : CPU time with an Intel Core i7-4510U@2.00 GHz and 

COD for different finite element meshes. 

N x × N y Number of elements Computation time [ s ] COD [ mm ] 

9 × 12 108 7 0.40 

19 × 24 456 17 0.28 

39 × 48 1872 93 0.21 

79 × 96 7584 1042 0.20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

derivation of the model, two aspects have been specially taken into account. The first one is the setting of the interface boundary

conditions obtained by assuming the cracks fully saturated and by averaging the Darcy law within the crack. The second one is

the application of the XFEM for the space discretisation of the governing equations, due to the singularity of the displacement

and pressure field. 

To verify the XFEM solution, we have also developed a semianalytical model in the case of steady-state flow, given that in

this case the governing equations decouple in the Laplace equation on a no-Lipschitz domain for the pressure, and in the linear

elasticity equations for the effective stresses. 

Four numerical examples have been presented. In the first two, which assume a steady-state fluid flow and different bound-

ary conditions on the interface, we have observed in general a good agreement of the XFEM solution with the semianalytical

one, though the XFEM solution was noted to underestimate the fluid flow in the porous media surrounding the crack and to

give a much smoother transition. It is conjectured that this behaviour can be improved by modifying only the enrichment func-

tions used for the pressure field approximation. In the third example, we have simulated the constant head test for finding the

permeability coefficient of a cement mortar specimen with defined single cracks in its interior. We observed that the perme-

ability coefficients computed using the XFEM results were agreeing quite well with the experimental ones, so that it can be

stated that the XFEM model globally behaves well. Finally, we have considered a fully couple problem where we have analysed

the flow in the porous media surrounding the crack as a function of the ratio of permeability of the porous media and of the

crack, showing that for high permeability of the surrounding porous medium, the fluid tends to avoid the crack, whereas for low

permeability of the surrounding porous medium, the fluid flows more rapidly in the crack and then along it, behaviour that was

noted also in the analysis of the second example. For this last example, we have also computed the crack opening displacements

for different values of λ and assessed the quality of the XFEM solution with the number of finite elements employed in the

computations. 
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Appendix A. Global matrices and load vectors 

C = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 0 

̂ C a 1 p1 
̂ C a 1 p2 

̂ C a 1 p3 

0 0 0 

̂ C a 2 p1 
̂ C a 2 p2 

̂ C a 2 p3 

0 0 0 

̂ C a 3 p1 
̂ C a 3 p2 

̂ C a 3 p3 

C p1 a 1 C p1 a 2 C p1 a 3 C p1 p1 + 

̂ C p1 p1 C p1 p2 + 

̂ C p1 p2 C p1 p3 + 

̂ C p1 p3 

C p2 a 1 C p2 a 2 C p2 a 3 C p2 p1 + 

̂ C p2 p1 C p2 p2 + 

̂ C p2 p2 C p2 p3 + 

̂ C p2 p3 

C p3 a 1 C p3 a 2 C p3 a 3 C p3 p1 + 

̂ C p3 p1 C p3 p2 + 

̂ C p3 p2 C p3 p3 + 

̂ C p3 p3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.1) 

K = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

K a 1 a 1 K a 1 a 2 K a 1 a 3 K a 1 p1 K a 1 p2 K a 1 p3 

K a 2 a 1 K a 2 a 2 K a 2 a 3 K a 2 p1 K a 2 p2 K a 2 p3 

K a 3 a 1 K a 3 a 2 K a 3 a 3 K a 3 p1 K a 3 p2 K a 3 p3 

0 0 0 K p1 p1 + ̂

 K p1 p1 K p1 p2 + ̂

 K p1 p2 K p1 p3 + ̂

 K p1 p3 

0 0 0 K p2 p1 + ̂

 K p2 p1 K p2 p2 + ̂

 K p2 p2 K p2 p3 + ̂

 K p2 p3 

0 0 0 K p3 p1 + ̂

 K p3 p1 K p3 p2 + ̂

 K p3 p2 K p3 p3 + ̂

 K p3 p3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.2) 

f = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f a 1 

f a 2 

f a 3 

f p1 

f p2 

f p3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.3) 

where 

C p(i ) a ( j) = −
∫ 
�

αN 

T 
p(i ) m 

T B a ( j) d V 

C p(i ) p( j) = 

∫ 
�

K 

−1 
f 

N 

T 
p(i ) N p( j) d V 

K a (i ) a ( j) = 

∫ 
�

B 

T 
a (i ) DB a ( j) d V 

K a (i ) p( j) = −
∫ 
�

αB 

T 
a (i ) mN p( j) d V 

K p(i ) p( j) = −
∫ 
�

k f B 

T 
p(i ) B p( j) d V 

̂ C a (i ) p( j) = −
∫ 
�

N 

T 
p(i ) 2 h t � ·

〈
B a ( j) 

〉
d s −

∫ 
�

N 

T 
p(i ) [[ B a ( j) ]] · n � d s 

̂ C p(i ) p( j) = −
∫ 
�

N 

T 
p(i ) 

2 h 

K f 

N p( j) d s 

̂ K p(i ) p( j) = −
∫ 
�

(
B 

T 
p(i ) · t T �

)
2 h k d (t � · N p( j) ) d s 

f a (i ) = 

∫ 
∂ t �

N 

T 
a (i ) t d s 

f p(i ) = 

∫ 
∂�

N 

T 
p(i ) v d s , (A.4) 

with i, j = 1 , 2 , 3 ; m = (1 , 1 , 0) ; and n � and t � the unit normal and tangential vectors to the interface �, respectively. 

Appendix B. Mass balance in the discontinuity 

The continuity equation of the fluid phase within the discontinuity �c =] − h, h [ ×� reads as ∫ 
�

∫ h 

−h 

∂ρ f 

∂t 
+ ∇ · (ρ f v f ) d x ∗ d y ∗ = 0 . (B.1) 
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Assuming that changes in the fluid mass inside the crack can be neglected, i.e. ∂ ρ f /∂ t = 0 , and by applying the divergence

theorem in Eq. (B.1) we obtain 

0 = 

∫ 
�

∫ h 

−h 

∇ · (ρ f v f ) d x ∗ d y ∗ = 

∫ 
�

∫ h 

−h 

ρ f 

(
∂v f x ∗
∂x ∗

+ 

∂v f y ∗
∂y ∗

)
d x ∗ d y ∗

= 

∫ 
�

∫ h 

−h 

ρ f 

∂v f x ∗
∂x ∗

+ 

∫ 
�
ρ f [[ v f y ∗ ]] d x ∗, (B.2)

where (v f x ∗ , v f y ∗ ) represent the components of v f in the curvilinear reference system ( x ∗, y ∗), in which the domain �c is repre-

sented. 

Noting that ∫ 
�

∫ h 

−h 

ρ f 

∂v f x ∗
∂x ∗

d y ∗ d x ∗ = 

∫ 
�
ρ f 

∂ 

∂x ∗

∫ h 

−h 

v d y ∗ d x ∗ = 

∫ 
�
ρ f 

∂q 

∂x ∗
d x ∗, (B.3)

with v f y ∗ = v f · n �, the balance of mass inside the crack cavity �c can be finally expressed as follows: 

[[ v f ]] · n � + 

∂q 

∂x ∗
= 0 . (B.4)

By taking the solid matrix incompressible, i.e. ∇ · v s = 0 , then there holds 

n [[ v f − v s ]] · n � + 

∂q 

∂x ∗
= 0 (B.5)

thus 

nk f [[ ∇p]] · n � + 

∂q 

∂x ∗
= 0 , (B.6)

where we have used the Darcy’s law. From Eq. (4.2) and the representation (4.6) , it is not difficult to show that 

[[ ∇p( ̂  x 0 )]] · n �0 = 2 πφ(t 0 ) , (B.7)

which combined with (B.6) yields 

φ(t) = 

1 

2 πk f 

∂q 

∂x ∗
. (B.8)
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