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This paper proposes a procedure for design sensitivity analysis using the direct differentiation method
which can be easily included into a finite element code. By a reformulation of the governing equations,
it is shown that the derivatives necessary to evaluate the sensitivity of a given performance measure cor-
responding to the current design configuration can be obtained through a post-processing step by the
same finite element solver used to solve the discrete state equations. The procedure is illustrated for
some examples with known analytical expression of the sensitivity and then applied to several practical
problems in the design of an extrusion process.
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1. Introduction

Extrusion is the process used to manufacture products in the
form of continuous lengths with a uniform cross section. It is the
task of the die to convert the cylindrical flow from the extruder
into the required cross section. The design of a profile die is conse-
quently a formidable task due to the intricate cross sections and
tight dimensional tolerances that are usually required, coupled
with the complexity of the flow phenomena involved in extrusion.

The significant advances of the modelling techniques during the
recent years have made possible the simulation of the complex
physical phenomena occurring in manufacturing processes. By
now, there are several commercial and research software tools that
have been developed for these simulations [1]. By including in such
codes also the facility of the design sensitivity analysis, one can ob-
tain an efficient design methodology.

A sensitivity analysis, which is the subject of the current paper,
aims to quantitatively estimate the importance of a given change
of parameters or design variables with respect to a global die de-
sign, without requiring trial and error attempts. It also represents
a step in gradient-based optimization algorithms [2–5].

Progress in sensitivity analysis described for instance in [5–9],
have made it feasible to use intensive numerical methods in design
optimization for real applications in general [10,11,3] and in mate-
rial processing designs such as polymer extrusion [10,12–14], me-
tal forming processes [15], die shape design in sheet metal
ll rights reserved.
stamping processes [7], and polymer injection and compression
moulding processes [12,16], in particular.

In mathematical terms, the objective of a sensitivity analysis is
the evaluation of the derivative of a given performance measure
with respect to the design variables for given admissible configura-
tions. The performance measure quantifies a certain process
behaviour that one means to monitor. It is generally expressed as
functional of the design variables and of the response or state vari-
ables. Since the state variables generally depend on the design
variables through the state or equilibrium equations, the main con-
cern in the sensitivity analysis is the evaluation of the implicit vari-
ations of these variables. The most common and used methods that
are found in the literature are [6,17]: the finite difference method
(FDM); the adjoint variable method (AVM); and the direct differen-
tiation method (DDM). FDM represents the most straightforward
way to compute sensitivities: a small design perturbation is intro-
duced for each design variables, and the gradient of the response is
then computed using a finite difference scheme to approximate the
derivative. FDM is easy to implement although computationally
expensive, since it requires that the problem is solved again for
the perturbed value of each of the design variable. This method will
however be considered in this paper to assess the proposed proce-
dure. The AVM uses the solution to the adjoint problem to elimi-
nate the implicit derivations that appear in the performance
measure; its use is convenient when there are many performance
measures to be considered. However, for the case of nonlinear
problems, the AVM applies to a linearization version. DDM uses
implicit differentiation to differentiate the state variables, involv-
ing the differentiation of the governing equations, and can be ap-
plied also to nonlinear problems.

http://dx.doi.org/10.1016/j.compstruc.2010.02.003
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An important aspect in the design problem of an extrusion pro-
cess concerns the geometry change. In such a case the governing
equation will be defined in a variable domain, and therefore param-
eters that control the geometry of the body need to be included in
the set of design variables. The domain parameterization method
[18,19] and the material derivative method [20–22] are alternative
techniques to represent the shape variations. The former method
defines the derivatives assuming a fixed reference domain and ap-
plies the chain rule. A transformation that links the fixed reference
domain, i.e. an invariant geometry, with the material coordinates is
also inherent to FEM implementation where element coordinates
serve as reference coordinates and the shape design variation can
be represented by variations of the nodal coordinates, with the
shape functions held fixed [17,23]. The material derivative method
defines the derivatives at the undeformed (or initial) configuration
instead, and depends on the domain design velocity, which repre-
sents the direction of a given design perturbation.

In this paper we are concerned with the inclusion of a sensitiv-
ity analysis approach into a finite element (FE) code using the
DDM. Unlike current methods for sensitivity analysis and in order
to keep the modifications to the FE code at a minimum, we develop
a single procedure that yields the solution, the sensitivity values
and the performance measure values within the same iterative
strategy employed to solve the governing system of equations.
The details of the sensitivity formulations are fully consistent with
the details of the numerical model and the solution algorithm used
in the simulation. This means that identical spatial discretization,
interpolation functions and degrees of freedom are considered in
the simulation and the design derivatives of the state variables
are all well defined [17]. Highly accurate sensitivity predictions
can therefore be obtained with the proposed procedure. The strik-
ing feature of our procedure is that it can be easily implemented in
existing finite element codes without changes to the core part of
the codes, i.e. the solver and the data structure.

With the aim of providing a powerful, flexible design aid for
interactive use by the designer, the proposed sensitivity analysis
approach is implemented into the commercial, finite element
POLYFLOW [24] solver and included into an extrusion die design
environment. This design environment is based on the classic
three-column concept [25] and consists of: the structural model;
the optimization algorithm, and the (design) optimization model.

The remainder of the paper is organized as follows: in Section 2
we introduce a consistent sensitivity analysis formulation for a
steady state problem, formulated for treating the case of change
of shapes using the domain parameterization method. In Section 3
we propose a numerical procedure to evaluate the sensitivity of a
performance measure for any given design configuration within
the same iterative strategy used to solve the governing system of
equations. The proposed procedure is then developed in full details
for two classical analytical examples in Section 4 with the expres-
sions of the augmented matrices given in the Appendix. The proce-
dure is then applied to the design of extrusion dies in Section 5. In
Section 6 we validate the procedure by applying it to the design of
two industrial dies. This is followed by the conclusions in Section 7.
2. Sensitivity analysis

This section introduces the design sensitivity analysis for the
steady state response of a discrete system obtained by applying
the FE method. We denote by bT = [b1, . . . ,bk] 2 Rk the vector of de-
sign or control variables. The vector b can include shape and/or
non-geometric variables, such as material properties. The domain
parametrization method is used to represent the design geometry
[18], and the direct differentiation method is adopted to evaluate
the derivative of the implicitly defined variables.
2.1. Statement of the problem

Let us denote by F: Rk � Rm�d � Rm�d ? R a scalar function
which represents a performance measure, such as, weight of the
structure, displacement at a point, mean stress in a certain region,
pressure drop across a die, exit velocities, and define

f ðbÞ :¼ Fðb; xðbÞ;uðbÞÞ ð1Þ

with x 2 Rm�d for m = 1,2,3 denoting the nodal coordinates of the FE
mesh , d the number of nodes, and u 2 Rm�d the discrete solution of
the state equation. We assume that for a given b, there exists a map-
ping RX: Rk � Rm�d ? Rm�d such that x is defined implicitly in terms
of b by the following equation

RXðb; xðbÞÞ ¼ 0 ð2Þ

Also, the mapping RU: Rk � Rm�d � Rm�d ? Rm�d is introduced to
represent the discrete form of the state equations as follows

RUðb; xðbÞ;uðbÞÞ ¼ 0 ð3Þ
2.2. Design sensitivity analysis

The sensitivity analysis aims to quantify the change in value of
the assigned performance measure for a given variation of the de-
sign variable. This amounts to compute the derivative of f with re-
spect to b. Assuming that F, together with RX and RU, enjoy all the
regularity properties we need, and using the chain rule we have

df
db
¼ @F
@b
þ @F
@x

@x
@b
þ @F
@u

@u
@b

ð4Þ

In Eq. (4), the derivatives @F
@b ;

@F
@x and @F

@u can in general easily be evalu-
ated, given the explicit dependence of F on x, u and b; whereas the
evaluation of @x

@b and @u
@b offers major difficulties since the variables x

and u are implicit functions of b. Differentiating Eqs. (2) and (3) yields

dRX

db
¼ 0 ¼ @RX

@b
þ @RX

@x
@x
@b

@RU

@b
¼ 0 ¼ @RU

@b
þ @RU

@x
@x
@b
þ @RU

@u
@u
@b

ð5Þ

that can be rewritten as follows:

@RX

@x
@x
@b
¼ � @RX

@b
;

@RU

@u
@u
@b
¼ � @RU

@b
þ @RU

@x
@x
@b

� � ð6Þ

and must be solved with respect to the components of the matrices
@x
@b and @u

@b.

Remark. Notice that @RU
@u is a matrix (m � d) � (m � d) and @u

@b is a
matrix (m � d) � k, hence @RU

@u
@u
@b denotes the standard row by

column product between matrices. The same observation applies
for the other terms.
3. Numerical procedure

In this section we show that for any given design configuration
the sensitivity of f can be evaluated within the same iterative strat-
egy used to solve the nonlinear equations (2) and (3). Let �bib denote
the value of the design variables defining the given configuration,
then Eqs. (1)–(3) can be equivalently written as follows:

Find ½b; x;u; f � such that :

RbðbÞ :¼ b� �b ¼ 0
RXðb; xÞ ¼ 0
RUðb; x;uÞ ¼ 0
RFðb; x;u; f Þ :¼ f � Fðb; x;uÞ ¼ 0

ð7Þ
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Fig. 1. Flow chart including POLYOPT, POLYFLOW and DOT.
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For a given �b, Eq. (7)1 simply states b ¼ �b, hence, Eq. (7)2 and Eq. (7)3

define x and u as solution of Eqs. (2) and (3) for b ¼ �b, whereas Eq.
(7)4 yields the corresponding value of the performance measure.

By introducing the notation RT :¼ [Rb,RX,RU,RF] and
PT :¼ [b,x,u, f], Eq. (7) can be written in a compact form as follows

Find P; such that :

RðPÞ ¼ 0
ð8Þ

By solving Eq. (8) with the Newton–Raphson method, one is led to
consider the following iteration until convergence is reached:

Given Pk; find Pkþ1 such that

RðPkÞ þ dR
dP

����
Pk
ðPkþ1 � PkÞ ¼ 0

ð9Þ

where Pk+1 = [bk + Db,xk + Dx,uk + Du, fk + Df]. In matrix form Eq. (9)
reads as

@Rb
@b 0 0 0
@Rx
@b

@Rx
@x 0 0

@RU
@b

@RU
@x

@RU
@u 0

@RF
@b

@RF
@x

@RF
@u

@RF
@f

2
666664

3
777775

k

Db
Dx
Du
Df

8>>><
>>>:

9>>>=
>>>;
¼

�Rb

�RX

�RU

�RF

8>>><
>>>:

9>>>=
>>>;

k

ð10Þ

Since the solution of Eq. (7) defines x, u and f as implicit function of
b, from (8) it follows that dR

db ¼ 0. Using the chain rule we can there-
fore write

dR
db
¼ @R
@b
þ @R
@x

dx
db
þ @R
@u

du
db
þ @R
@f

df
db
¼ 0 ð11Þ

which in matrix form reads as

@Rb
@b 0 0 0
@Rx
@b

@Rx
@x 0 0

@RU
@b

@RU
@x

@RU
@u 0

@RF
@b

@RF
@x

@RF
@u

@RF
@f

2
666664

3
777775

@b
@b
@x
@b
@u
@b
@f
@b

2
66664

3
77775 ¼

0
0
0
0

2
6664

3
7775 ð12Þ

Noting that the matrix in Eq. (12) is the same as in Eq. (10), once the
Newton–Raphson iteration has converged, we can also obtain the
derivatives in Eq. (4) required to compute the sensitivity of f by sim-
ply performing a back substitution in Eq. (12).

It is also worth noting that, for the solver, there is no real dis-
tinction between the objective functions and the constraint func-
tions as both functions are defined implicitly. This will be clearer
later in the analytical examples.

The optimization of the design of an extrusion die is realized
within the so called extrusion die design environment which consists
of the following main components: (i) a CFD solver (POLYFLOW
[24,31]) for computing the flow response together with the objec-
tive and constraint functions evaluation and computation of their
respective sensitivities, (ii) an optimization package (DOT [26])
using a sequential quadratic programming method for optimizing
the die design, and (iii) an optimization scheme (POLYOPT [27]) to
control the overall process and provide the necessary data inter-
faces. The interaction between the individual components is
shown in Fig. 1.

The new procedure appears to be a powerful tool to calculate
the sensitivities by simply enlarging the system of equations that
is sent to the solver. The commercial solver has been therefore aug-
mented to compute function values for the objective and the con-
straints as well as their sensitivities. The application of this design
tool is used throughout the example sections demonstrating the
validity of the approach for a wide range of different problems.
4. Analytical examples

This section presents the application of the proposed procedure
to some classical problems for which it is possible to analytically
compute the sensitivity of the given performance measure. This
is done to detail and visualize the steps needed to create the aug-
mented matrices for the solution of the discrete state equations
and the sensitivity analysis as a combined problem. The procedure
is therefore developed in the following Problem 1, whereas Prob-
lems 2 and 3 address different aspects to the actual implementa-
tion of the procedure.

4.1. 1D elastic bar problem

The bar of Fig. 2, fixed at both ends, with length L, and stiffness
K, subjected to a uniform load equal to one, is used to illustrate the
proposed procedure for the case of two design variables with
b = {L,K}. The objective is to find the values for the design variables
to satisfy
u
L
2

� �
¼ 1 ð13Þ
Problem 1. 1D elastic bar problem with two design variables
b = {L,K}.



x

c=1

L

Fig. 2. Model problem.

Table 1
Problem 1: position, displacement and sensitivities for each node i (analytical results).

Node i 1 2 3 4 5

xi 0 1/8 1/4 3/8 1/2
ui 0 3/256 1/64 3/256 0
dxi/dL 0 1/4 1/2 3/4 1
dui/dL 0 3/64 1/16 3/64 0
dui/dK 0 �3/512 �1/128 �3/512 0
df1/dL �63/512
df1/dK 63/4096
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4.1.1. Continuum model
The equilibrium of the elastic bar shown in Fig. 2 is governed by

the state equation

K
d2u

dx2 þ 1 ¼ 0 x 2�0; L½

uð0Þ ¼ uðLÞ ¼ 0 ð14Þ

with the analytical solution

uðxÞ ¼ Lx� x2

2K
ð15Þ

Assuming the following performance measure

FðL;uÞ ¼ u
L
2

� �
� 1

� �2

ð16Þ

a function of L and K, we introduce a constraint equation as

gðLÞ ¼ L� 2 6 0 ð17Þ

Note that the design variables, b = {L,K}, are of different type, i.e. of
geometric and material type, respectively. The governing equation
will therefore be written in a reference configuration using the do-
main parameterization method [17,19]. The application of this
method is quite natural when using the FE method, if referring to
the isoparametric formulation of the finite elements. The local coor-
dinates of each element can be indeed taken as the reference coor-
dinate system.

4.1.2. FE model
By introducing on X = [0,L], a finite element mesh of N linear

bar elements (see Fig. 3) and equally spaced nodesi, for
i = 1, . . . ,N + 1, the nodal coordinates xi are given by

xi ¼
i� 1

N
L ð18Þ

whereas the state variable u = [u1, . . . ,uN+1], representing the axial
displacement of the nodes, is obtained by solving the discrete equi-
librium equation

RU ¼ Ku� C ¼ 0 ð19Þ

with K the global stiffness matrix, and C the force vector, both
dependent on the design variables L and K.

Assuming N = 4, for illustrative purposes, the discrete perfor-
mance measure is given by

FðL;uÞ ¼ ðu3 � 1Þ2 ð20Þ

Recalling that in this 1D problem the FE solution ui, i = 1, . . . ,N + 1
coincides with the analytical solution at the nodes, we can explicitly
1 2 3 4 5

Fig. 3. FE model.
deduce the analytical expressions for the sensitivities of the perfor-
mance measure and of the constraint, as follows

dF
dL
¼ L

2K
L2

8K
� 1

 !
;

dF
dK
¼ � L2

2K2

L2

8K
� 1

 !

dg
dL
¼ 1;

dg
dK
¼ 0

ð21Þ

where the derivatives of u and x with respect to L are given by the
following equations

dxi

dL
¼ i� 1

N
;

dui

dL
¼ L

K
i� 1

N
� ði� 1Þ2

N2

 !
ð22Þ

The position, displacement and sensitivity values corresponding to
L = 0.5 and K = 2 are reported in Table 1.

4.1.3. Numerical solution
For the given configuration L ¼ L and K ¼ K , the solution of (18)

and (19) can be obtained by solving the following system of
equations

Given L and K; find ½L;K; x;u; f ; g�; such that :

RLðLÞ ¼ L� L ¼ 0

RKðKÞ ¼ K � K ¼ 0

RXiðL; xÞ ¼ xi �
i� 1

N
L ¼ 0 for i ¼ 1; . . . ;5

RUðL;K; x;uÞ ¼ Ku� C ¼ 0

RFðL;K; x;u; f Þ ¼ f � ðu3 � 1Þ2 ¼ 0
RGðL; gÞ ¼ g � Lþ 2 ¼ 0

with the conditions :

u1 ¼ u5 ¼ 0
g 6 0

ð23Þ

In order to apply the Newton–Raphson method to Eq. (23), the fol-
lowing derivatives are needed

@RL

@L
¼ 1;

@RK

@K
¼ 1

@RX

@x
¼ 1;

@RX

@b
¼ @RX

@L
@RX

@K

� �
@RU

@u
¼ K;

@RU

@x
¼ @K
@x

u� C;
@RU

@b
¼ @RU

@L
@RU

@K

� �
¼ 0

1
K

K
� �

@RF

@u
¼ f0 � 2ðu3 � 1Þ 0g; @RF

@f
¼ 1;

@RF

@b
¼ @RF

@L
@RF

@K

� �
¼ f0 0g

@RG

@g
¼ 1;

@RG

@b
¼ @RG

@L
@RG

@K

� �
¼ f�1 0g

ð24Þ

Further details on the expression of the partial derivatives (24)3 can
be found in Appendix. Since the boundary conditions are u1 = u5 = 0,
the unknowns of this problem reduce to



Table 2
Problem 1: unknown nodal values obtained at each iteration.

Iteration u2 u3 u4 x2 x3 x4 f g L K

1st 3/128 1/32 3/128 1/8 1/4 3/8 15/16 �3/2 1/2 2
2nd 3/256 1/64 3/256 1/8 1/4 3/8 31/32 �3/2 1/2 2
3rd 3/256 1/64 3/256 1/8 1/4 3/8 3969/4096 �3/2 1/2 2

Table 3
Problem 1: sensitivities with respect to L (numerical results).

@Lu2 @Lu3 @Lu4 @Lx2 @Lx3 @Lx4 @Lf @Lg @LL @LK

3/64 1/16 3/64 1/4 1/2 3/4 �63/512 1 1 0

Table 4
Problem 1: sensitivities with respect to K (numerical results).

@Ku2 @Ku3 @Ku4 @Kx2 @Kx3 @Kx4 @Kf @Kg @KL @KK

�3/512 �1/128 �3/512 0 0 0 63/4096 0 0 1

Fig. 4. Model problem for heat conduction along the x-axis.

614 J. Sienz et al. / Computers and Structures 88 (2010) 610–624
Du ¼
Du2

Du3

Du4

2
64

3
75; Dx ¼

Dx1

Dx2

Dx3

Dx4

Dx5

2
6666664

3
7777775

; Df ; Dg; Db ¼
DL

DK

� �
ð25Þ

For, L ¼ 0:5 and K ¼ 2, for instance, and the following initial
conditions

uk¼0 ¼ 0; f k¼0 ¼ 0; gk¼0 ¼ 0; Lk¼0 ¼ 1; Kk¼0 ¼ 2 ð26Þ

convergence of the iterative procedure has been achieved after
three iterations as shown in Table 2. Tables 3 and 4 report the sen-
sitivity with respect to the design variables L and K, respectively,
which are equal to the analytical values reported in Table 1.

4.2. 1D heat conduction problem

The model problem is illustrated in Fig. 4. The state equations
are the same as for the 1D elastic bar problem with the analytical
solution given by Eq. (15), where K denotes now the conductivity
and the state variable u (displacement) is replaced by the temper-
ature T. The objective is to find the values for the design variables
so that the temperature in the centre of the domain satisfies

T
L
2

� �
¼ 1 ð27Þ
Problem 2. 1D heat conduction with one design variable.

Assuming the performance measure as,

FðT; LÞ ¼ T
L
2

� �
� 1

� �2

¼ L2

8K
� 1

 !2

ð28Þ

for the derivative with respect to L we have

dF
dL
¼ L

2K
L2

8K
� 1

 !
ð29Þ

In this example we consider the additional side constraints on the
design variable L given by

1 6 L 6 5 ð30Þ

which is convenient to express as

g1ðLÞ ¼ 1� L 6 0
g2ðLÞ ¼ L� 5 6 0

ð31Þ
Introducing the same FE mesh as in Problem 1, with N = 4, equally
spaced nodes for illustrative purposes, the nodal coordinates are
then given by Eq. (18), and the discretized state equation takes
the form of Eq. (19) with TT = [T1,T2,T3,T4,T5].

The system of equations that defines the temperature distribu-
tion, in the configuration characterised by L, is therefore the
following

Given L; find ½L; x;u; f ; g1; g2�; such that :

RLðLÞ ¼ L� L ¼ 0

RXiðL; xÞ ¼ xi �
i� 1

N
L ¼ 0 with i ¼ 1; . . . ;5

RUðL; x; TÞ ¼ KT � C ¼ 0

RFðL; x;T ; f Þ ¼ f � ðT3 � 1Þ2 ¼ 0
Rg1ðL; ;g1Þ ¼ g1 � 1þ L ¼ 0
Rg2ðL; ;g2Þ ¼ g2 þ 5� L ¼ 0

with the conditions :

T1 ¼ T5 ¼ 0
g1 < 0
g2 < 0

ð32Þ

The system of Eq. (32) has been solved for different values of the de-
sign variable L. The performance measure and its sensitivity have
then been obtained: (i) analytically by evaluating the functions in
Eq. (29); (ii) by the proposed procedure; and (iii) by using finite dif-
ferences with a value of the perturbation DL = 0.0001. Good agree-
ment between the performance function and the sensitivity
evaluated in the three different ways is observed by comparing
the values displayed in Fig. 5. The finite difference evaluation of
the sensitivity appears correct for up to three digits (see Table 5).
This is due to the fact that the solver outputs the function values
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Fig. 5. Problem 2: values of the performance measure, f, and of its derivative with
respect to L, df/dL, obtained analytically by the proposed procedure and by FDM.

Table 5
Problem 2: performance function value f and sensitivity value df/dL for different
values of L, solved using the proposed procedure, analytically and FDM.

Length L f df/dL f analytic df/dL analytic df/dL FDM

0.000 0.766 �0.438 0.766 �0.438 �0.438
0.500 0.517 �0.539 0.517 �0.539 �0.539
1.000 0.250 �0.500 0.250 �0.500 �0.500
1.500 0.048 �0.273 0.048 �0.273 �0.273
2.000 0.016 0.188 0.016 0.188 0.188
2.500 0.282 0.930 0.282 0.930 0.929
3.000 1.000 2.000 1.000 2.000 2.000
3.500 2.345 3.445 2.345 3.445 3.440
4.000 4.516 5.313 4.516 5.313 5.310

0

0.2

0.4

0.6

0.8

1

Iteration

f

Fig. 6. Problem 2: convergence history for optimization.

Fig. 7. Problem 2: initial design (top) (L = 1.0) and final design (bottom) (L = 2.828).
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only with seven digits and the perturbation occurs in the fourth
digit.

We also note that, graphically, the performance function attains
a minimum which coincides with the analytical result at L ¼

ffiffiffi
8
p

where df/dL = 0.
After this design space study the automatic optimization was

carried out. The convergence history for the optimization is dis-
played in Fig. 6 with full convergence achieved after four iterations
and an optimal value of the performance function F(L) = 0.7780�14.

Fig. 7 shows the FE mesh configurations for the initial design
L = 0 and the final design L ¼

ffiffiffi
8
p

.

Problem 3. 1D heat conduction with two design variables.

In this example, the design variables are now chosen to be the
position of the extreme nodes. Assuming the same FE mesh of
the previous examples, the performance measure is given by

Fðx1; x5;TÞ ¼ ðT3 � 1Þ2 ¼ ðx5 � x1Þ2

8K
� 1

 !2

ð33Þ

with the constraints

x1 6 0:5
0:0 6 x5 6 4:0
x5 � x1 > 0

ð34Þ

where x1 and x5 are the end nodes coordinates. Since the FE solution
Ti coincides with the analytical solution at xi, the analytical expres-
sion of the sensitivity of the performance measure reads as

dF
dx1
¼ � dF

dx5
¼ �ðx5 � x1Þ

2K
ðx5 � x1Þ2

8K
� 1

 !
ð35Þ

from which follows that the gradient of F vanishes along the
straight line with equation
x5 ¼ x1 þ
ffiffiffi
8
p

ð36Þ

The model problem is the same as in Fig. 4, where the FE discretiza-
tion obtained for three different pairs of ðx1; x5Þ, i.e. (0.0,1.0),
(0.5,1.0) and (�0.5,4.0) is shown in Fig. 8. The system of equations
that needs to be solved in this case can be therefore written as
follows

Given x1; x5; find ½x;T; f ; g�; such that :

Rx1ðx1Þ ¼ x1 � x1 ¼ 0

Rx5ðx5Þ ¼ x5 � x5 ¼ 0

RXiðxÞ ¼ xi �
i� 1

N
ðx5 � x1Þ with i ¼ 2;3;4

RUðx;TÞ ¼ KT � C ¼ 0

RFðx; T; f Þ ¼ f � ðT3 � 1Þ2 ¼ 0

Rg1ðx1; g1Þ ¼ g1 � x1 þ 0:5 ¼ 0

Rg2ðx5; ;g2Þ ¼ g2 � x5 þ 4 ¼ 0

Rg4ðx5; g3Þ ¼ g3 þ x5 ¼ 0

Rg4ðx1; x5; g4Þ ¼ g4 þ x5 � x1 ¼ 0

with the conditions :

T1 ¼ T5 ¼ 0

g 6 0

ð37Þ

where we have set g = [g1,g2,g3,g4] and the inequality g 6 0 is
meant component-wise. Figs. 9 and 10 display the diagram of the
analytical expression of the performance measure for the cases:



Fig. 8. Problem 3: FE models for: (a) x1 = 0.0, x5 = 1.0, (b) x1 = 0.5, x5 = 1.0 and (c)
x1 = �0.5, x5 = 4.0.
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Fig. 9. Performance measure and sensitivity values for Problem 3 with x1 = 0.0.
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Fig. 10. Performance measure and sensitivity values for Problem 3 with x5 = 2.0.
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Fig. 11. Performance measure for Problem 3.
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Fig. 12. Convergence history for optimization Problem 3.

Fig. 13. Initial design (top) (x1 = 0; x5 = 1.0) and final design (bottom)
(x1 = �0.91421; x5 = 1.91421) for Problem 3.
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x1 = 0.0, x5 2 [0.0,4.0]; and x1 2 [�1.5,0.5], x5 = 2, respectively. In the
first case, f reaches a minimum at x1 = 0.0, x5 ¼

ffiffiffi
8
p

as shown in
Fig. 9, whereas in the second case f reaches a minimum at
x1 ¼ 2:0�

ffiffiffi
8
p

; x5 ¼ 2:0 (see Fig. 10).
The objective function is plotted in Fig. 11 for different values

of the design variables x1 and x5. Although the problem itself is
straightforward we observe that the optimum is a line, hence
each point on this line defined by a set of values for the two de-
sign variables will deliver the same optimum value. Therefore,
there is no unique global solution. However, if the total length
of the domain is chosen equal to x1 � x5 ¼

ffiffiffi
8
p

, the minimizer will
be unique.

The convergence history for the optimization is displayed in
Fig. 12 showing also in this example, convergence after four itera-
tions. The optimal value of the objective function is
F(x1,x2,1) = 0.2832�14 which is achieved for the design variable val-
ues of x1 = �0.91421; x5 = 1.91421 after four new designs and four-
teen full function evaluations. This result agrees well with the
analytic solution. The temperature in the centre of the adjusted
edge is equal to 1.0 within machine precision. The initial and the
final designs are finally displayed in Fig. 13.
5. Sensitivity analysis for the design of an extrusion die

Extrusion is a manufacturing process used to obtain continuous
profiles with a uniform cross section, which can be, for instance,
circular, annular or rectangular [28]. A restriction zone or die land
is placed perpendicular to the direction of the flow in order to force
the polymer melt toward the die’s outer edge. A major challenge in
the extrusion process is the design of the die because of the
deformation undergone by the flowing material right after the
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Fig. 16. Problem 4: sensitivity values dF1=dL, dF2=dL and df/dL for different values of
L obtained using the proposed procedure and the FDM.

Table 6
Problem 4: performance function values F1 and F2 and sensitivities dF1/dL and dF2/dL
for different values of L, solved using the proposed procedure and FDM.

Length
L

F1 dF1/dL dF1/dL
FDM

F2 dF2/dL dF2/dL
FDM

�0.500 0.179 �3.991 �3.994 6.11E+05 9.36E+05 9.36E+05
�0.400 0.004 �0.328 �0.329 7.08E+05 1.01E+06 1.01E+06
�0.200 0.052 0.259 0.259 9.25E+05 1.16E+06 1.16E+06

0.000 0.067 �0.059 �0.059 1.17E+06 1.30E+06 1.30E+06
0.200 0.047 �0.110 �0.110 1.45E+06 1.45E+06 1.45E+06
0.400 0.028 �0.077 �0.077 1.75E+06 1.59E+06 1.59E+06
0.600 0.016 �0.046 �0.046 2.08E+06 1.74E+06 1.73E+06
0.800 0.009 �0.027 �0.027 2.44E+06 1.88E+06 1.88E+06
1.000 0.004 �0.016 �0.016 2.83E+06 2.03E+06 2.02E+06
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die [29–32]. These deformations are mainly due to the combined
effect of the velocity redistribution and the stress relaxation due
to the viscoelasticity of the material.

Usually, the problems encountered in the die design can be one
of the following two types:

� Exit flow uniformity or die balancing, which can be achieved by
modifying of the up-stream part of the die.

� Free surface calculation with the objective of achieving the cor-
rect target cross-sectional area by modification of the die lips.

In the following, the latter type of design is addressed. Two
die designs and one material design are analysed by consid-
ering different performance measures and/or design variables.
These are:

� Problem 4: Design of the die length with pressure drop and aver-
age tangential velocity as performance measures;

� Problem 5: Design of the parallel section diameter with free sur-
face height as performance measure;

� Problem 6: Material design with free surface height as perfor-
mance measure.

Die designs based on exit flow uniformity are considered in Sec-
tion 6 for applications in design optimization.

All melt flows are modelled by the Navier–Stokes equations
which are solved numerically. The proposed procedure together
with the evaluation of the sensitivity by FDM, have been imple-
mented in this code.

Problem 4. Design of the die length with pressure drop and
average tangential velocity as performance measures.

In this example, the die shown in Fig. 14 is designed to mini-
mize the weighted sum of the average tangential velocity, �v t , along
the outlet plus the pressure drop, Dp, across the die by changing
the length of the parallel section L at the die land. The pressure
drop influences the extruder size and the power requirements,
whereas the average tangential velocity can influence the final
product homogeneity [13]. We therefore identify the following
two performance measures,

F1 ¼ ð�v tÞ2; F2 ¼ ðDpÞ2 ð38Þ

where Dp = pi � pe and v t ¼ 1
d

R d
0 v t dz, with vt measured at the die

land and d the height of the corresponding die section, in this case
d/2 = 1 . The functions given in Eq. (38) are used to define a single
performance function f simply by associating with each Fi a weight-
ing factor wi P 0 , with

Pk
i¼1wi ¼ 1, we set

f ¼ w1F1 þw2F2 ð39Þ

where Fi denotes the adimensional form of the functions in Eq. (38).
Please note, this is to demonstrate the procedure. For industrial die
Inflow 

L

Die land

Die

x

y

(1,1)

(0,0)

pi pe

Outflow

Axis of symmetry

Fig. 14. Problem 4: model problem for an extrusion process with the length of the
parallel zone L as design variable.
design, more elaborate multiobjective function tools should be
used.

In this study, the flow length variation L, shown in Fig. 14, is ta-
ken as design variable subject to the following constraints:

�0:5 6 L 6 1:0 ð40Þ

where for L = 0 the die land is placed in its original position at x = 1.
The geometry of the die and boundary conditions are shown in

Fig. 14. The melt flow across the die is modelled as a 2D problem
and has been solved for different values of L.

Fig. 15 displays the variation of f, F1 and F2 with L for
w2 = w1 = 0.5. As we can observe, the optimization problem is not
very well posed, the average tangential velocity ðF1Þ can be mini-
mized by simply extending the length of the parallel section infi-
nitely. The reduction in pressure drop ðF2Þ demands the opposite,
namely the shortening of the parallel section as much as possible.
Furthermore, both parts of the performance function differ by a
factor of six orders of magnitude in their values. A better posed
problem would be obtained by minimizing the average tangential



Fig. 17. Problem 4: FE discretization for different configurations: L = 0.0 (top),
L = �0.5 (centre), and L = 5.0 (bottom).
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Fig. 18. Problem 5: die design with given final extrudate height Gimp.
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Fig. 19. Problem 5: performance measure f and sensitivity values df/dL for different
values of the design variable L.
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Fig. 22. Problem 6: die design with given final extrudate height Gimp.
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velocity with a constraint on the pressure drop, or vice versa. Look-
ing at the values of f, we observe a very shallow local minimum for
L � �0.35. This will cause some difficulties in obtaining a solution,
Fig. 20. Problem 5: FE discretization for different configurations: original co
when starting from a design variable value close to 0.0, because
the optimiser might then try to extend the parallel section to re-
duce the average tangential velocity. The sensitivity values of f,
F1 and F2, with respect to L are shown in Fig. 16, where we ob-
serve good agreement between the results obtained with FDM
and the ones computed using the proposed procedure. We note
that df/dL approaches zero for L � �0.35 which corresponds to a
local minimum, while it attains a constant value for increasing L
coincident with the constant slope of the asymptote to f. Table 6
contains the values of F1, F2 and their sensitivities calculated
with the solver and by finite difference. Fig. 17 finally depicts
the FE configurations obtained for different values of L: L = 0,
L = 0.5 and L = 5.

Problem 5. Design of the parallel section diameter with free
surface height as performance measure.

Once the flow material leaves the die, significant deformation of
the extrudate can be observed right after the die lip. We consider
here that the material flows through the air at the die outlet. The
aim of this example is to change the parallel zone height in order
to obtain a given final extrudate, as shown in Fig. 18.

This problem has been modelled as an axisymmetrical flow
with a free surface at the die outlet.

As design variable, we consider the parallel section height L
shown in Fig. 18, subjected to the following constraints:

�0:45 6 L 6 1:0 ð41Þ

whereas the performance measure is defined in terms of the final
height of the extrudate as

F ¼ ðGcal � GimpÞ2 ð42Þ
nfiguration, L = 0.0 (top), and shrunk configuration, L = �0.45 (bottom).
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Fig. 23. Problem 6: performance measure f and sensitivity values df/dn for different
design parameters n.
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Fig. 24. Convergence history for Problem 6.
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with Gimp the target extrudate height and Gcal the current free sur-
face height calculated by the FE analysis.

The computed values of the performance measure and of its
sensitivity are plotted in Fig. 19 for different values of L where
we note that at L � �0.414 the performance function reaches a glo-
bal minimum with df/dL � 0. For greater values of L, the sensitivity
attains a constant value of around 0.189. Fig. 19 also displays the
Fig. 26. Extrusion die design for the catheter. Exit ge

Fig. 25. Problem 6: FE meshes obtained for different value of the design varia
sensitivity values obtained by using FDM which show a good
agreement with those obtained with the proposed procedure.
The convergence history of the optimization procedure is displayed
in Fig. 20. Convergence occurred with the sixth design after having
carried out 26 function evaluations. The optimal design is obtained
for the value of L = �0.414 when the deviation of the computed ra-
dius of the extrudate from the imposed radius Gimp = 0.1 is
1.8 � 10�5; reduced down from 0.492 for the initial design.
Fig. 21 depicts the two FE meshes for L equal to 0.0 and �0.45.

Problem 6. Material design with free surface height as perfor-
mance measure.

The objective of this example is to change the viscosity of the
fluid in such a way that the resulting extrudate has a given height.
The model problem is described in Fig. 22 with a free surface at the
die outlet [33]. The fluid is modelled using the Navier–Stokes equa-
tions with the viscosity defined by the Bird Carreau model [34]:

gð _cÞ ¼ g1 þ ðg0 � g1Þð1þ ðk _cÞ2Þ
n�1

2 ð43Þ

where n, g1, g0 and k are material parameters and _c represents the
shear rate.

The power law index n is assumed as design variable subjected
to the conditions

0:0 6 n 6 1:0 ð44Þ

where for n = 1 we have the Newtonian fluid with viscosity g0. We
consider the same performance measure as in the last example gi-
ven by

F ¼ ðGcal � GimpÞ2 ð45Þ

where now f is defined as function of n.
Fig. 23 displays the values of the performance measures and of

its sensitivity for different values of n. A local minimum in the per-
formance measure can be observed for n � 0.4 where df/dn is
nearly zero. For n > 0.4, the values of the sensitivity approaches a
constant value equal to 0.154, whereas for n < 0.4 the sensitivity
of the extrudate decreases considerably. The values of the sensitiv-
ity obtained by using FDM agree quite well with those obtained by
ometry (a), IGES model of the conic section (b).

ble n: for n = 1.0 (i.e. constant viscosity) (top) and for n = 0.15 (bottom).



Fig. 27. Design variables for the catheter die.

Fig. 28. Original and final (optimized) dies: inlet geometry (left), die land (center),
exit velocity contour plots (right).
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the proposed procedure as shown in the same Fig. 23. We can also
observe that the performance measure seems to have a ‘kink’
which leads to a near vertical line in the gradient of the function.
Nevertheless the functions are sufficiently smooth and they can
be used for optimization with gradient-based methods without
any major problems. The convergence of the optimization proce-
Fig. 29. Nodal velocity distrib
dure is shown in Fig. 24 where convergence occurred with the fifth
design after 21 function evaluations. The optimal design is ob-
tained for a value of n = 0.393 when the deviation of the computed
radius of the extrudate from the imposed radius of Gimp = 0.51 is
4.86 � 10�6; reduced down from 0.084 for the initial design. The
two FE meshes for n equal to 1.0 and 0.15 are plotted in Fig. 25.

The successful optimization of Problem 6 shows that it is possi-
ble to obtain a better working die by adjusting material parame-
ters. However, for this example no attention was paid to whether
it is possible to change the properties of the polymer used for
the extrusion of this rod over such a large range using normal addi-
tives and/or by adjusting the temperature of the melt. Neverthe-
less, the variation of n is a useful die design criterion to adopt,
for it can also be caused by changes in the raw material, processing
conditions and/or performance of the die [35–38].

6. Industrial case studies

Typically, a traditional die design sequence involves the follow-
ing steps,

Design! Manufacture! Experimental balancing

complemented by some flow simulations. The numerical procedure
proposed in this paper allows us to change this die sequence into
the following one:

Design! Numerical balancing ! Redesign! Manufacture

! Experimental balancing

Manufacture’s costs and experimental balancing steps are conse-
quently drastically reduced with respect to traditional die design
processes [39].

In this section we validate the procedure by solving two indus-
trial case studies: a catheter extrusion die and a rubber (flat profile)
extrusion die. Despite the sensitivities are calculated using the pro-
posed procedure, no sensitivity results are shown hereafter, this is
because the focus of this example is on the optimal industrial de-
sign of these dies.

Problem 7. Catheter extrusion die.

Objective of this application is to refine (or redesign) the initial
die design shown in Fig. 26. The basic idea is that the die entry zone
must be designed in such a way that the proper amount of melt en-
ters both the upper and the lower parts of the die including a flow
separator, and that the exit section must have the appropriate
length. The fluid is modelled using the Navier–Stokes equations
with the viscosity defined by

gð _cÞ ¼ g0 _cn�1 ð46Þ
ution over the exit area.



Fig. 30. Flat rubber profile die for optimization: flow domain (a), design variables and re-meshing sections (b).

Fig. 32. Manufactured die exit plates for flat profile optimized using conical/narrowing.

Fig. 31. Exit velocity profiles for parallel die (a) and die optimized using conical widening/narrowing (b).
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Fig. 33. Profile cross-section.
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where n = 0.42 and g0 = 1 are the material parameters values. A vol-
umetric flow rate of 1 mm3/s is considered in the simulations with
zero velocity along the walls.

The aim is to achieve a uniform velocity profile distribution at
the local die exit. By selecting the three design variables of
Fig. 27, i.e. two at the entry and one that is the length of the parallel
section at the die exit, the performance measure to be minimized is
then defined as follows

Fðdv1;dv2;dv3Þ ¼
Z

A
v2

z dA ð47Þ

where vz is the local velocity and A the cross section area. The con-
straints on the design variables are (in mm):

� 0:1 6 dv1 6 1:5
� 2:0 6 dv2 6 1:0
� 2:0 6 dv3 6 0:0

ð48Þ

with the initial values of (0.0,0.0,�1.0). The optimized values of the
design variables are (0.237892,�0.0882171,�0.567113), with
F = 1.18531, which have been obtained after 30 evaluations. The ini-
tial and optimized die designs are depicted in Fig. 28 together with
the velocity distribution contours. The velocity contours along the
exit section of the initial design show non-uniformity, evidencing
that a strong imbalance of the flow would occur in any fully devel-
oped flow. The optimized die design, on the other hand, shows a sig-
nificant improvement. This is confirmed in Fig. 29, where the spread
of exit velocities is reduced from [0.25 m/s,2.25 m/s] down to
[0.6 m/s,1.9 m/s].

Problem 8. Flat profile.

A rubber die is here designed as in Problem 7, by balancing the
flow velocities at the exit. A power law for viscosity with zero
velocity along the walls is also assumed here. The FE model of
the flow domain of both, the die and the conical reservoir sections,
are displayed in Fig. 30.

The displacement of the nodes shown in Fig. 30(b) are chosen as
design variables, with an initial depth of 5 mm, and upper and low-
er bounds for the design variables of 5.0 mm and �1.0 mm, respec-
tively. Two nodes on the cross section are assumed fixed. The
optimization process will result in conical widening/narrowing,
which can be achieved by defining a re-meshing zone by means
of a ruled surface, as shown in Fig. 30(b).

Assuming the integral of the difference between the local and
average velocities over the exit section as the performance mea-
sure, we can write:

Fðdv1;dv2;dv3; dv4Þ ¼
Z

A
ðvz � �vzÞ2 dA ð49Þ

The velocity distribution is calculated for both the parallel die and
the die balanced by conical widening/narrowing, which is displayed
in Fig. 31.

To validate the optimization processes, two optimized die de-
signs were manufactured. The profiles are depicted in Fig. 32.
These samples have been designed by assuming different design
variables ranges. The manufactured profile obtained with the die
design 2 is not straight showing some waviness all along its length
whereas the profile manufactured with die design 1 shows a
straight appearance. The final cross section of the profile is de-
picted in Fig. 33.

7. Conclusions

The growing emphasis on the design and optimization of man-
ufacturing processes introduces new demands and challenges to
industries. In order to make efficient the design of manufacturing
processes, in this paper we have presented a numerical procedure
for calculating the sensitivity and performance values which can be
easily included within an existing FE code.

By reformulating the governing equations, the evaluation of the
derivatives needed for the sensitivity analysis are obtained by a
post-processing step of the iterative method used to solve the gov-
erning equations. The changes required in the code are hence kept
to a minimum. Shape variations are evaluated using the domain
parameterization method, whereas the direct differentiation meth-
od is used to solve the implicit variations of the state variables.
Since the sensitivity formulations have been developed for the dis-
cretized system of equations, its accuracy will depend on the FE
approximation.

Two analytical examples have been developed in detail to verify
the proposed procedure, showing good agreement with the finite
difference method and recovering the analytical solutions exactly.
Numerical simulation and sensitivity analysis are combined to
analyse three die design extrusion problems, with the melt flow
modelled by the Navier–Stokes equations. The procedure is finally
validated by the design optimization of two industrial applications,
a catheter extrusion die and a rubber flat profile extrusion die.

In summary it has been shown that:

� The procedure allows one to perform the sensitivity analysis of
the problem at hand by simply enlarging the system of equa-
tions that is sent to the solver.

� The sensitivity values are very accurate as long as we are dealing
with accurate FE approximations.

� Time calculation is significantly saved as once the equilibrium
equations are solved, the sensitivity of f can be calculated by
simply performing a back substitution in Eq. (12).

� Excellent results are obtained when using the calculated sensi-
tivity values in an optimization process.

� The procedure shows great versatility since a wide range of
problems have been successfully solved.
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Appendix A

In the isoparametric formulation of the FE method [40], the po-
sition variable x and the displacement field u are defined by the fol-
lowing mappings of the fixed reference domain n 2 [�1,1]:

xðnÞ ¼ NðnÞxe; uðnÞ ¼ NðnÞue ð50Þ
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In Eq. (50), xe ¼ ½xe
1; x

e
2� and ue ¼ ½ue

1; u
e
2� denote the position and dis-

placement of nodes 1 and 2, respectively, and N = [N1,N2] the shape
functions defined as

N1 ¼
1� n

2
; N2 ¼

1þ n
2

ð51Þ

The corresponding elemental stiffness matrix and force vector, writ-
ten in terms of the fixed reference domain, are then given as follows

KeðxÞ ¼ K
Z 1

�1
NT
;nN;nJ�2

e jJejdn; CeðxÞ ¼
Z 1

�1
NjJejdx ð52Þ

where N,n denotes the derivative of N with respect to n and
Je ¼ dx

dn ¼ L
2N ¼ jJej is the Jacobian of the transformation from the ref-

erence coordinates n to the global coordinates. Note that Ke and Ce

depend on x through Je. From Eq. (52), it follows

@Ke

@x
¼ �

XN

n¼1

K
Z 1

�1
NT
;nN;nJ�2

e Je;x dn ð53Þ

where we note that the shape design variations are represented by
variations of the nodal coordinates, with the shape functions held
fixed [17].

A.1. FE matrices for Problem 1

By accounting of Eqs. (51) and (52), the element stiffness matrix
and force vector read as

Ke ¼ K
ðxe

2 � xe
1Þ

1 �1
�1 1

� �
; Ce ¼ ðxe

2 � xe
1Þ

1
2
1
2

" #
ð54Þ

which yield the following residual vector

Re
U ¼ Ke ue

1

ue
2

� �
� Ce ¼ �

K
ðxe

2
�xe

1
Þ ðue

2 � ue
1Þ þ

ðxe
2�xe

1Þ
2

K
ðxe

2�xe
1Þ
ðue

1 � ue
2Þ þ

ðxe
2�xe

1Þ
2

2
64

3
75 ð55Þ

The expression @RU
@x


 �e
at the element level is hence given as follows

@RU

@x

� �e

¼
K

ðxe
2
�xe

1
Þ2
ðue

1 � ue
2Þ þ 1

2
K

ðxe
2
�xe

1
Þ2
ðue

2 � ue
1Þ � 1

2

K
ðxe

2
�xe2

1
ðue

2 � ue
1Þ þ 1

2
K

ðxe
2�xe

1Þ
2 ðue

1 � ue
2Þ � 1

2

2
4

3
5 ð56Þ

For Problem 1, where we use a mesh of equally spaced nodes,
boundary conditions u1 = u5 = 0, and two design variables [L,K],
the global matrices employed in the Newton–Raphson procedure
read as follows

@RU

@u
¼

2KN
L

�KN
L 0

�KN
L

2KN
L

�KN
L

0 �KN
L

2KN
L

2
64

3
75 ð57Þ

@RU

@x
¼

� KN2

L2 u3
KN2

L2 ðu3 � u2Þ � 1
2 0

KN2

L2 ðu3 � u2Þ þ 1
2

KN2

L2 ðu2 � u4Þ KN2

L2 ðu4 � u3Þ � 1
2

0 KN2

L2 ðu4 � u3Þ þ 1
2

KN2

L2 u3

2
664

3
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@RU

@L

� �e

¼ 0;
@RU

@K

� �e

¼ ðu
e
2 � ue

1Þ
xe

2 � xe
1

�1
1

� �
ð59Þ

@RU

@b
¼ @RU

@L
@RU
@K

h i
¼

0 N
L ð2u2 � u3Þ

0 N
L ð2u3 � u2 � u4Þ

0 N
L ð2u4 � u3Þ

2
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3
75 ð60Þ

@RX

@L
¼

@RX2
@L

@RX3
@L

@RX4
@L

2
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� 1
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� 2
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@RF

@u
¼ @RF

@u2

@RF

@u3

@RF

@u4

� �
¼ ½0 �2ðu3 � 1Þ 0 � ð62Þ
with the global residual given by

R ¼

RL

RK
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RX3

RX4
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