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1 INTRODUCTION

Designers intuitively make decisions regarding the choice of
material, the shape of the design space, and the distribution
of the material in it in order to realize efficient and robust
designs that are light and strong as required in the aerospace
industry. This experience-based approach has worked well
over the decades. But it is not satisfactory anymore for
advanced solutions in demanding applications; human intu-
ition might simply miss out on interesting, better designs.
Engineering design optimization aims to overcome this by
efficiently searching the design space in an automatic and
systematic manner for optimal design solutions employing
various mathematical, engineering, and computational tools
in one framework.

Structural engineering design optimization aims to mini-
mize a measure or a combination of measures of a structure’s

performance, such as the weight, stiffness, compliance,
frequency, for a given set of design variables. Different
parameters can be chosen as design variables, such as geo-
metrical properties, material properties, or loadings. Such
variables are mathematically adjusted during the automatic
design process and are constrained to satisfy physical and
manufacturing requirements.

A general simulation-based optimal design process is built
around the synthesis of several disciplines as described in the
three-column concept by Braibant and Fleury (1986) (see
Figure 1). This process consists in the choice of (i) a (design)
optimization model (ii) an analysis model, and (iii) the opti-
mization algorithms.

The optimization model represents the link between
the structural model and the optimization algorithms. This
enables the transformation of the design optimization prob-
lem into a parametric optimization problem. Such link is
realized through the design parameterization process, which
involves mainly two steps: the geometric modelling and the
design variable definition. First, one builds a geometric model
with the definition of all of its dimensions. Then, one identi-
fies the design variables as a subset of the geometric/physical
parameters that characterize the structure. The analysis model
refers to the mathematical determination of the physical
behavior of the structure. It represents the structure in terms of
a system of ordinary and/or partial differential equations with
unknown structural responses such as displacement, veloc-
ity, and stress fields. Numerical methods are usually used to
obtain approximate solutions to a given accuracy, such as the
finite element method (FEM). The optimization algorithms
denote the suite of numerical procedures that solve the actual
optimization problem, such as mathematical programming or
discrete optimality criteria methods (see Review of Optimiza-
tion Techniques). The algorithms can be classified in various
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2 Aerospace System Optimization

Figure 1. Simulation-based optimal design process: The three-column concept: (a) Design problem: given the loads and the supports, what
is the “best” structure?; (b) three-column concept; (c) detailed aspects.

manners, such as local/global, gradient-based/gradient-free
or deterministic/probabilistic-stochastic methods.

Further aspects are the sensitivity analysis (see Sensitiv-
ity Analysis) for gradient-based optimization (see Review of
Optimization Techniques) and an interactive graphical user
interface. In Hörnlein and Schittkowski (1993), some early
implementations of the three-column concept or variations
of it in computer codes such as CARAT, SAPOP, CAOS, and
OASIS, are described. Later, Sienz and Hinton (1997) added
accurate FEM incorporating error estimation (see Error Esti-
mation and Quality Control) and adaptive mesh generation
(see Adaptive Mesh Generation and Visualization). Some
aspects can also be found in Keane and Nair (2005).

The objective of this section is to illustrate a practical real-
ization of an optimization problem in structural engineering
design, which includes the selection of the design variables,
the mathematical formulation of the problem, the parameter-
ization and finally the optimization algorithms available for
the resolution of that specific type of problem. With that aim,
different optimization techniques including topology, size,
and shape optimization are carefully formulated in their con-

tinuous and discrete approaches. Advanced technologies usu-
ally involved in the resolution of practical problems are also
briefly reviewed, such as modelling, analysis by the FEM,
mesh generation, error estimation, and adaptivity. Finally,
several illustrative examples concerning structural engineer-
ing design optimization in the aerospace industry are given.

The reader is referred to Computational Optimization for
details on computational optimization.

2 TOPOLOGY, SHAPE, AND SIZE
OPTIMIZATION

Structural optimization problems are generally classified as:

� Topology optimization: The best performance of a struc-
ture is obtained by finding the optimal material and shape
connectivity for a structure within a specified region. For
continuum structures this could mean to optimally place
a given amount of material in a given domain to form a
structure with outer boundaries and inner openings. For
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truss type structures it could mean adding/removing mem-
bers between joints. Topology optimization is particularly
useful in the conceptual design phase (Figure 2a–b).

Figure 2. Structural optimization. Topology optimization for a con-
tinuum structure: (a) Original layout; (b) optimized topology. Size
optimization for a discrete structure; (c) original layout; (d) opti-
mized structure. Shape optimization for a continuum structure: (f)
original layout, (g) optimized shape.

� Size optimization: The best performance of a param-
eterized structure is obtained by updating geometrical
variables, such as the thickness of a continuum structure,
or the diameter of the members of a discrete structure. Size
optimization is generally used to find the optimal cross-
sectional area of beams and stringers, or the thickness of
plates and shells (see Composite Laminate Optimization
with Discrete Variables) (Figure 2c–d).

� Shape optimization: The best performance of a structure
is obtained by looking for the best shape of the domain
by simply modifying the existing boundaries of the ini-
tial domain (Allaire, 2007). Shape optimization is, for
instance, used to optimize the shape of a given (or sug-
gested) rib structure that would give the minimal mass
under some specified loading conditions and constraints
(Figure 2f–g).

Aircraft components are structurally often designed based on
stability requirements. In this case, the use of the FEM for
the optimization of such components usually follows a two-

phase design process. First, an initial design is obtained by
performing topology optimization. This is then followed by
detailed sizing/shape optimization techniques, where stabil-
ity, stress and manufacture constraints can easily be included
(see Section 5.5).

2.1 Topology optimization

For structures, topology optimization involves search-
ing for the optimal connectivity within a given design
space. For continuum structures this typically means
adding/removing/redistributing material within a specified
region generating layouts with outer boundaries and inner
openings, whereas for truss structures the problem consists
in finding the optimum configuration and spatial sequence of
members and joints.

This section exemplifies the method for continuum struc-
tures, with focus on the material distribution method. In this
method we are interested in the optimal distribution of a given
material in space by determining which points of space should
be material points and which points should be voids.

Mathematically, the problem is formulated as follows.
Given a design domain � ⊆ Rd (d = 2, 3), a classical problem
of topology optimization consists of finding the subdomain
�mat ⊆ � that yields the minimum compliance of the struc-
ture, that is, the minimum value of the external work, assumed
as a measure of the global rigidity of the structure. Other
objective functions can also be used in engineering applica-
tions, such as the weight, the cost, or the maximum stress in
a point. The design domain � can then be described in terms
of the characteristic function χ = χ(x) that is equal to one
at the points of the reference space that should be material
points, and is equal to zero at those points that should be voids
(no material). Denoting by t the traction force applied on a
fixed part �N of the boundary of the domain � and by g the
specified displacement along the boundary �D, the classical
topology optimization problem can then be formulated as

Find χ(x) for x ∈ � such that minimize∫
�N

t·uds (Compliance)

subject to the constraint on the volume

∫
�

χ(x)dx ≤ ϕ|�| (1)

with ϕ = |�mat|/|�| ∈ [0, 1] the assigned volume frac-
tion, |�| the volume of the domain � and u solution of the
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equilibrium equation

∫
�

σ(u) : ε(ũ)dx =
∫

�N

t·ũ ds for any ũ = 0 on �N

u = g on �D

σ(u) = χD : ε(u)

where D is the material stiffness and ε(u) is the strain.

Equation (1) is an integer optimization problem that can be
transformed into a continuous optimization problem (Allaire,
2007) using either the homogenization method (Bendsøe and
Kikuchi, 1988; Hassani and Hinton, 1999) or the penalization
method (Bendsøe and Sigmund, 2003; Zhou and Rozvany,
1991) or the relaxation method (Strang and Kohn, 1986)
or some heuristic methods, such as the evolutionary method
(Xie and Steven, 1997; Hinton and Sienz, 1995). Regardless
the optimization method used to find the optimum layout of
the structure, the result is usually a distribution of material
density (see Figure 3) in terms of a grey scale geometrical rep-
resentation of the structure, where typically black is assigned
to a finite element when χ = 1, that is, it is solid, white

when χ = 0, that is, it is void, and the different grey intensity
for 0 < χ < 1. The optimal topology is afterwards discerned
using some kind of image processing or intuitively using engi-
neering judgement. In the following, only the homogeniza-
tion and the penalization method will be described, referring
to the cited literature for other approaches, such as those men-
tioned above and further methods for topology optimization,
for example, level set methods (Wang, Wang and Guo, 2003).

Following original development of the classical formula-
tion as given in equation (1), it is now possible and common
practice to employ more commonly used engineering design
specifications, such as, weight minimization subject to stress
constraints.

2.1.1 Topology optimization by homogenization

Materials with a spatially varying microstructure (e.g., Figure
4b) can be introduced to describe the varying material prop-
erties in space. That is, at the microscopic level, the material
model is considered to have a periodic structure with unit cell
Y made of voids (χ = 0) and the given material with its elastic-
ity tensor D (χ = 1). At the macroscopic level, the material
model is then described by a homogeneous material with

Figure 3. Topological design using the material distribution method.

Figure 4. Topology optimization by distribution of a pre-defined type of composite material: (a) global problem; (b) unit cell Y with
definition of the geometric variables (a,b,θ).
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density 0 ≤ ρ ≤ 1 and homogenized elasticity tensor DH. To
exemplify the method, consider the fixed reference domain
� ⊆ R2 as shown in Figure 4a. The design variables of the
optimization problem are, for the chosen periodic microstruc-
ture depicted in Figure 4b, the geometric variables a, b, and
θ. The (pseudo-) density of the unit cell will then be given by
ρ = 1 − ab with ρ ∈ [0, 1] where ρ = 0 and ρ = 1 represent
the state of void and solid, respectively.

By using the FEM for the solution of the equilibrium equa-
tion (1), the type of interpolation functions for the design
variable fields (a(x), b(x), θ(x)) and for the homogenized dis-
placement field u = u(x) needs to be selected. In one of the
early implementations of this concept, realized in Bendsøe
and Kikuchi (1988), it is assumed that each finite element
has a specific cellular type of microstructure. This means
that in this case the field of the design variables is approx-
imated by piecewise constant functions � = (�1, . . . , �N)
with �i = (ai, bi, θi) and N the number of finite elements.
The finite element based topology optimization in this case
then can be formulated as

Find � = (�1, . . . ,�N) such that minimize

f (�) = FTU0 (Compliance) (2)

subject to the constraints

o ≤ a ≤ 1 o ≤ b ≤ 1
N∑

i=1
PiVi ≤ ϕV with Pi = (1 − aibi)

and U solution of the discrete homogenized equilibrium
equation

P(σ) − F = 0

σ = DH : ε(U)

U = g on �D

with DH evaluated at the Gauss point of the finite element.

A numerical algorithm based on the optimality criteria
of equation (2) has been proposed by Hassani and Hinton
(1999). Inherent in the homogenization method, the structural
analysis requires a two-step analysis: the solution of the cell
problem in order to evaluate the effective elasticity tensor DH

for each FE, and the solution of the homogenized problem.
An interactive on-line MATLAB implementation of an FEM
solution based topology optimization formulation for the case

of compliance minimization of statically loaded structures
can be found in Sigmund (2001).

2.1.2 Topology optimization by penalization

The penalization approach introduces a penalty in order to
replace the integer variables of equation (2) with continuous
values. This is for instance, realized by the so-called solid
isotropic material with penalization model (SIMP) (Bendsøe
and Sigmund, 2003) that introduces a continuous variableρ ∈
[0, 1] that resembles the density of a fictitious material of
stiffness tensor D defined as follows

D(ρ) = ρpDo (3)

with D0 the stiffness tensor of the solid material and p
the penalization factor (see Figure 5 for a graphical rep-
resentation of this function). The shape of this function
helps to achieve the goal of finding a design consisting
mainly of void or solid areas by penalizing intermediate
solutions. The optimal topology problem is therefore con-
verted into an optimization problem on a fixed domain � as
follows

Find ρ(x) for x ∈ � such that minimize

∫
�N

t·uds (Compliance) (4)

subject to the constraints

∫
�

ρ(x)dx ≤ ϕV 0 ≤ ρ ≤ 1

and u solution of the equilibrium equation

∫
�

σ(u); ε(ũ)dx =
∫

�N

t·ũds for any ũ = 0 on �N

u = g on �D

σ = ρpDo : ε(u)

The density bound, ρmin, is introduced to avoid a singu-
larity in the FE equations whereas a sufficiently big value
of p, that is, p ≥ 3, makes the stiffness tensor less than
proportional to ρ. Considering an FE discretization of the
reference domain with N FEs, the density ρ is approximated
as element-wise constant and represented by the vector: ρ =
ρ1, . . . , ρN. The discretized topology optimization problem
becomes
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Figure 5. Graphical representation of the function ρp for different
values of the penalization factor p.

Find ρ = (ρ1, . . . , ρN) such that minimize

f (ρ) = UTF = Compliance (5)

subject to the constraints

∑N

i=1
Viρi ≤ ϕV 0 ≤ ρmin ≤ ρi ≤ 1

and U solution of the equilibrium equation(
N∑

i=1

ρ
p
i Ki

)
U = F

where Ki is the (global level) stiffness matrix of the element i.
For other forms of penalization, see Allaire and Kohn (1993).
The heuristic iterative procedure, proposed in Bendsøe and
Sigmund (2003), to solve such a problem transforms the first
order optimality conditions of equation (5) into a fixed-point
equation of the form

ρi = ρi(Bi)
η for i = 1, . . . N (6)

with Bi = −(∂f/∂ρi)/αVi, α the Lagrange multiplier associ-
ated with the volume constraint and, ∂f

∂ρi
= −pρ

p−1
i UT

i KiU i

the sensitivity of the objective function. Note that an optimum
is reached when Bi = 1 and ρmin < ρi < 1. The numerical
procedure is described in equation (7), and Figure 6 shows a
flow chart of the structural topology optimization procedure.

(a) k = 0 ρk
e = 0.5 for e = 1,. . . N

j = 0 α j = l = 10 000 m “move limit” with m = 0.2
as suggested value

(b) For e = 1,. . . N, evaluate ρk+1
e = ρk

e (Bk
e)

η
with Bk

e =
−p(ρk

e )
p−1

UT
e KeUe

αjVe

ρk+1
e =




max(ρmin, ρe − m) if ρk+1
e ≤ max(ρmin, ρ

k
e − m)

ρk+1
e if max(ρmin, ρ

k
e − m)

< ρk+1
e < min(1, ρk

e + m)

min(1, ρk
e + m) if min(1, ρk

e + m) ≤ ρk+1
e (7)

(c) If
∑N

ε=1ρ
k+1
e Ve > ϕV

α j = α j /2, j = j + 1, GO TO (b)

(d) Compare ρk+1
e with ρk

e TO STOP

Otherwise SET k = k + 1 and GO TO (b)

START 

Define the reference domain 

Generate the FE mesh

Construct FE spaces for  U
and for the design variables

(e.g. ρ , α)

Update optimality criteria
scheme for the new ρ,α 

Compute the optimal
distribution of ρ (table 2.) DH 

FE analysis

Optimum? 

CAD representation

STOP 

No 

Figure 6. Flow charts of the numerical algorithms for topology
optimization problems.
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Figure 7. Typical numerical instabilities in finite dimensional topology optimization: (a) Checkerboard. Reproduced from Hassani and
Hinton (1999) c© Springer-Verlag; (b) local minima Reproduced from Sigmund and Petersson (1998) c© Springer-Verlag; (c) Reproduced
from Sigmund and Petersson (1998) c© Springer-Verlag and (d) mesh dependence for 600 and 5400 elements, respectively. Reproduced
from Sigmund and Petersson (1998) c© Springer-Verlag.

2.1.3 Numerical instabilities in finite element based
topology optimization

The finite dimensional topology optimization problem, in
general, can be solved using different methods of nonlin-
ear programming such as: optimality criteria methods (e.g.,
SIMP method in Section 2.1.2), sequential linear program-
ming methods, or other methods for constrained optimization
(see Review of Optimization Techniques). However, one
must be aware of the common numerical instabilities that
appear in topology optimization. These can manifest as (see
Figure 7):

� checkerboard: formation of regions of alternating solid
and void elements ordered in a checkerboard fashion;

� mesh dependence: qualitatively different solutions for dif-
ferent mesh-size or discretizations;

� local minima: different solutions to the same discretized
problem when choosing different methods.

Different methods have been proposed to cure these prob-
lems. Among others, these are: the use of higher-order FE for
the displacement function to avoid the checkerboard problem
(Hassani and Hinton, 1999); the perimeter control method
(Haber, Jog and Bendsoe, 1996), which limits the number of
holes that can appear in a domain; filtering techniques, which
limit the variation of the densities that appear in the set of
admissible stiffness tensors (Sigmund and Petersson, 1998),
relaxation by homogenization method to avoid mesh depen-
dency (Bendsøe and Kikuchi, 1988), and the continuation
method to avoid local minima (Allaire and Kohn, 1993).

2.2 Size optimization

This type of structural engineering design optimization prob-
lem is the best exemplified by the design of the optimal
thickness distribution of an elastic plate that occupies a

domain � with boundary ∂� and yields the minimum weight,
for such structures or the cross section optimization of trusses.
Concentrating on a plate, let h(x) denote the plate thickness
representing the design variable, a size design optimization
problem can be then formulated as follows (Allaire, 2007).

Find h(x) for x ∈ � such that minimize

∫
�

gρ dx (Weight) (8)

subject to the constraints

σν < σ∗

∫
�

h(x)dx = h0|�| hmin ≤ h(x) ≤ hmax

with h0 a given average thickness and u solution of the
static equilibrium equation

∫
�

h(x)σ(u) : ε(ũ)dx =
∫

�

t · ũdx for any ũ = 0 on ∂�

σ = D : ε(u)

In equation (8), ρ denotes the material density, g the grav-
itational acceleration, σν the von Mises equivalent stress,
which is a function of the current stress state, whereas σ∗

is the prescribed maximum stress.
Size optimization is widely used in the aerospace industry,

where h(x) can represent not only the structure’s thickness,
but also the frame height, the stringer height, or the cross
section area. For continuous composite material structures,
sizing optimization is used to determine the thickness of each
layer. Additionally, the ply angle should be optimized for such
structures (see Composite Laminate Optimization with Dis-
crete Variables for further details). The problem given above
is generally augmented by additional constraints, which are
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related to the control of displacement, buckling, fatigue, flut-
ter, and manufacturing constraints.

For stability requirements one can have constraints in the
form of

λ1 > 1 (9)

where λ1 is the smallest positive eigenvalue for compression-
loaded structures, and is given by solving the following
generalized eigenvalue problem:

(K − λKG)U = 0 (10)

where K denotes the stiffness matrix of the whole structure
or of the structural component, according to whether a global
or local buckling analysis is carried out, respectively, KG

the geometric stiffness matrix, λ an eigenvalue, and U the
corresponding eigenvector. The matrix KG is a component
of the global stiffness matrix K that arises from the nonlinear
form of the strain-displacement equations (Zienkiewicz and
Taylor, 2005; Bazant and Cedolin, 1991). If KG is replaced
by the mass matrix, equation (10) represents the undamped
free vibration equation and equation (9) would correspond to
a constraint on the frequency.

It is worth noting that when a large number of design vari-
ables and constraints are involved in the optimization process,
such as for the size optimization of the skin, stringers, frames,
longerons, and doors of the rear fuselage shell structure
shown in Figure 8, extremely large computational resources
are required (Stettner and Schuhmacher, 2004). In this case,
the large optimization problem can be broken into a series
of smaller problems but this involves some approximations.
The decomposition process identifies groups of design vari-
ables and constraints that interact closely with each other

Figure 8. Finite element model of a rear fuselage shell structure.
Reproduced with permission from Stettner and Schuhmacher (2004)
c© Altair Engineering, Ltd.

within the same group, but interact weakly with the rest of
the design variables. In this case, the original problem can
be broken down into a series of problems that can be solved
independently (for further details on the topic refer to Haftka
and Gürdal, 1992).

2.3 Shape optimization

Shape optimization can be defined as an optimal design prob-
lem where the design variable is the shape of the domain
�mat. To better illustrate the problem at hand, let an initial
domain � with volume V0 and boundary ∂ � = � ∪ �D ∪ �N

be given. The part of the boundary � is the one that can vary,
whereas �D and �N are respectively where displacements u

and traction forces f are prescribed. Using weight minimiza-
tion as an example, the shape optimization problem can then
be formulated as follows:

Find �mat ⊂ � such that minimize

∫
Vmat

gρ dV (Weight) (11)

with V (�mat) = V0 and u the solution of the equilibrium
equation

∫
�mat

σ(u) : ε(ũ)dx =
∫

�N

t · ũds for any ũ = 0 on �D

u = g on �D

σ = D : ε(u)

where �matis obtained by only “moving” the free boundary �.
Note that one of the main difficulties here is that the domain
�mat is variable. The most common approaches proposed in
the literature to solve shape optimization problems are (see
Figure 9): the boundary parameterization method (BPM) and
the Hadamard boundary variation method (Sokolowski and

(a) (b)

(Id +θ ) Ω

Ω

θ .n

Figure 9. Shape optimization approaches: (a) Boundary parame-
terization method; (b) Hadamard boundary variation method.
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Zolesio, 1992) or the so-called continuous based differentia-
tion approach.

2.3.1 Boundary parameterization method (BPM)

In the BPM the first step is to discretize the domain � into a
finite number of elements. The boundary is therefore charac-
terized by the mesh nodes, which are called control nodes and
will be moved in the optimization process. Common practice
is not to use all the boundary nodes in order to describe or
modify the shape of a given structure, but an interpolation
of the control nodes using splines, polynomial functions, and
so on, (for further details, see Airfoil/Wing Optimization).
Since a set of real parameters z are needed to describe such
functions, for example, the position of the control nodes of
splines, such parameters are used as the design variables of
the shape optimization problem and equation (11) can be
written as follows:

Find z ∈ Rd such that minimize

f (z) =
∑N

i=1
gViρi = Weight (12)

with: V (z, X(z)) = V0 and U(z) the FE solution of the
discrete state equations over �mat(z)

K(X)U = F

where, X(z) gives the position of the FE nodes related to
the position of the boundary control nodes.

A design sensitivity analysis (see Sensitivity Analysis) is
then performed by differentiating the discrete form of the
structural governing equations (12).

2.3.2 Hadamard boundary variation method

The Hadamard boundary variation method, on the other hand,
is based on the idea that the boundary moves along its normal
and the admissible domain � is parametrized in terms of a
given class of functions. Considering an initial smooth open
set � ⊂ Rd for d = 2, 3 and a map θ: � → R

d , the domain
�mat in equation (11) can be expressed as

�mat = (Id + θ)� (13)

where for a small vector field θ, (Id + θ) is an admissible
deformation of �. The domain �mat can be now interpreted
as an image of a one-to-one mapping of � and equation (11)
can be reformulated as follows

Find θ such that minimize∫
V
gρdV (Weight)

with V ((Id + θ)�) = V0 and u solution of the equilibrium
equation

∫
(Id+θ)�σ(u) : ε(ũ)dx = ∫

�N
t · ũds for any ũ = 0 on �N

u = g on �D

σ = D : ε(u) (14)

In view of the application of the gradient method (see
Review of Optimization Techniques) to solve equation (14),
the notion of shape derivative f ′(�) at � is introduced as

f ((Id + θ)(�)) = f (�) + f ′(�)θ + o(θ) (15)

where limn→0
|o(θ)|
||θ|| = 0 and f ′(�)θ is called the directional

derivative of f in direction of θ. By the Hadamard structure
theorem (Sokolowki and Zolesio, 1992), f ′(�)θ is a scalar
quantity defined on the boundary � that depends only on the
normal trace θ·n as follows

f ′(�0)θ =
∫

�0

(t·u)(θ·n)ds (16)

A physical interpretation of equation (16) is that the
domain needs to be reduced (i.e., θ · n < 0) to minimize the
compliance. For more details on the subject, the reader is
referred to Allaire (2007).

The discrete equation (12) and the discrete form of
equation (14) – obtained, for instance, by introducing
an FE approximation of θ - have the form of a classical
finite dimensional constraint optimization problem (see
Formulating Design Problems as Optimization Problems)
and can therefore be solved by standard techniques of
mathematical programming. Mathematical programming
consists basically of the calculation of the objective function
value and its gradients with respect to the design variables for
a feasible solution (i.e., sensitivity analysis, see Sensitivity
Analysis) and the calculation of a locally feasible change
of the design variables. These two steps are repeated until
a local minimum is reached. A flow chart of the shape
optimization procedure with adaptivity, as proposed in Sienz
and Hinton (1995, 1997), is then depicted in Figure 10.

In the course of a shape optimization process, the design
may change considerably and the initial domain discretiza-
tion (FE mesh) can lead to non-optimal designs. Adaptive
procedures are then necessary to adapt the domain discretiza-
tion to the current state in the optimization process. This

DOI: 10.1002/9780470686652.eae498



Encyclopedia of Aerospace Engineering, Online © 2010 John Wiley & Sons, Ltd.
This article is © 2010 John Wiley & Sons, Ltd.
This article was published in the Encyclopedia of Aerospace Engineering in 2010 by John Wiley & Sons, Ltd.

10 Aerospace System Optimization

START

Define initial design

Generate the FE mesh

Estimate error

Generate new shape

Evaluate new
mesh density

FE analysis

Optimum?

STOP

Yes

No

Evaluate sensitivities

Error?

Yes

No

Figure 10. Flow charts of the numerical algorithms for shape opti-
mization with adaptivity.

includes both the adaptation of the discretization of the shape
to the optimum structure and the adaptation of the discretiza-
tion of the state variables (such as displacements) to the
structural response.

2.3.3 Algorithmic details in shape optimization

Several algorithmic difficulties can be met when running a
shape optimization problem, such as:

� oscillating boundaries, which can be solved by regulariz-
ing the mesh, that is, smoothing the mesh at each iteration;

� singularities on the displacements, usually at the shape
corners or changes of boundary conditions, for which the
shape gradient can be set to zero near the corners;

� volume constraint oscillations, when the volume con-
straint is not exactly enforced before convergence.

3 GEOMETRY MODELING AND GRID
GENERATION

Engineering design optimization develops solutions that are
at the limits as defined by the constraints. It is therefore essen-
tial to ensure that the underlying analysis is accurate and it
correctly represents the behavior of the optimized structure –
error estimates together with adaptive mesh generation can
be used to achieve this.

By applying the FEM, the continuous constrained opti-
mization problem is transformed into a finite dimensional
one by introducing an FE approximation of the continuous
variables (see Formulating Design Problems as Optimization
Problems). The construction of such approximations requires
a partition of the continuous physical domain � ⊂ Rd for
d = 2, 3 into simpler geometric elements, which is called
mesh, whereas the process of constructing the mesh is called
mesh generation.

The main objective of a mesh generation procedure is to
obtain a good quality mesh, that is, the mesh conforms to the
geometry of the physical problem one wishes to model, and
it also delivers the best possible numerical accuracy with the
least number of elements. In general, this is obtained with
grids composed of elements of appropriate sizes, possibly
varying throughout the domain, and being of good quality
shape as given by a quantitative definition of the quality of a
mesh (Loehner, 2008; Frey and George, 2000).

The mesh quality measures account indirectly for the
parameters that influence the accuracy of the discrete solution
whereas a-posteriori error estimates provide an estimate of
the error of the discrete solution in terms of only known quan-
tities, that is, mesh element size and shape, problem data and
the computed discrete solution. If one denotes by T h a mesh
of size h on �, u the exact solution, uh the discrete solution,
and ||u − uh|| the distance between the two functions, that is,
the exact error, one says that e(T h, problem data, uh) is an
a-posteriori estimate of the error if a bound of the following
type, called reliability estimate, holds

||u − uh|| ≤ e(T h, problem data, uh) (17)

with e(T h, problem data, uh) required, for instance, to
approach zero for h → 0 and uh → u. By iterating such pro-
cess, one can then envisage a mesh adaptive algorithm, which
consists of successive loops (Morin, Nochetto and Siebert,
2002; Carstensen and Orlando, 2005). Sienz et al. (1999)
integrated adaptive FEM into an overall shape optimization
algorithm (see Figure 10) ensuring that the optimal design
solution is based on accurate analyses.

For further details on error estimation and adaptive mesh
generation the reader is referred to Error Estimation and Qual-
ity Control and Adaptive Mesh Generation and Visualization.

4 STRUCURAL ANALYSIS BY THE
FINITE ELEMENT METHOD

The performance of the structure and the constraint functions
limiting the design in an engineering design optimization
loop is typically evaluated using the FEM. The discrete
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equations of the FEM are obtained by using FE interpolations
of the displacement and strain in the form

u = NU and ε(u) = BU (18)

with U the time dependent nodal displacement vector, N

the matrix of the element shape functions and B the one
containing the derivative of the shape functions.

The discrete form of the balance of momentum over the
domain �, is written then as follows

MÜ + P(σ) − F = 0 (19)

where M = ∑
eM

(e), P = ∑
eP

(e) and F = ∑
eF

(e). The
element arrays are defined by

M(e) =
∫

�e
NTρN d� P (e) =

∫
�e

BTσd� and

F (e) =
∫

�e
NTb d� +

∫
�Ne

NTt d� (20)

with �e the element domain, �Ne = ∂�e ∩ �N the part of the
boundary where the external traction forces t are prescribed
and b is the body forces vector.

In the case of linear elasticity the constitutive equations
is given by σ = De, with D the material modulus tensor,
obtaining the elemental stress force

p(e) =
(∫

�e
BTDB d�

)
U = K(e)U (21)

with K(e) is the global element level stiffness matrix. For
more details on this topic the reader is referred to Fundamen-
tals of Discretization Methods, Finite Element Analysis of
Composite Plates and Shells, Meshfree Discretization Meth-
ods for Solid Mechanics, Extended Finite Element Methods,
Error Estimation and Quality Control, Adaptive Mesh Gener-

ation and Visualization, Computational Methods in Buckling
and Instability, Thermal Analysis, Computational Dynamics.

5 NUMERICAL EXAMPLES

5.1 Influence of optimization problem definition
on outcome

The optimal design of a given square plate is here analyzed
by slightly modifying the original definition of the problem.
The initial design is shown in Figure 11 where an orthogonal
tensile load with a ratio of 2:1 on opposite sides is applied
to the plate. Note that only a symmetric quarter of the plate
is modelled. For the base line optimal design, there are five
design variables, which can move along radial lines to mod-
ify the internal boundary. The objective is to minimize the
volume of the structure subject to a constraint on the equiva-
lent stress. Figure 12 contains the base line optimal design and
also the different solutions that can be obtained by modifying
one parameter of the base line optimization problem.

The second problem looks at the volume minimization of
a connecting rod subject to a limit on the equivalent stress
as given in Figure 13. The aim is to demonstrate the influ-
ence of the analysis parameters and design parameters on
the optimal design. There is a tensile load modelled as a lin-
early varying line load in the bold hole. The design model
makes use of quarter symmetry. Figure 14 shows the best
solutions obtained employing different FE models, while Fig-
ure 15 shows the best solution obtained for this problem. The
importance of employing an accurate underlying FEM for
engineering design optimization is highlighted when compar-
ing Figure 14a with Figure 14b. Although the final volume is
lower for the former and the stress constraint seems to be sat-
isfied, the former solution is infeasible: a subsequent adaptive

Figure 11. (a) Shape optimization problem definition of square plate with five design variables; (b) original square plate geometry; and (c)
equivalent stress distribution.
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Figure 12. Various solutions to the square plate problem obtained by modifying one parameter of the baseline optimization problem. (a)
Base line optimal design; (b) starting geometry modified to a central square cut-out, rotated by 45◦; (c) reduced stress constraint; (d) stress
levelling on the surface of the circular cut-out as objective function; (e) 3 radial design variables; (f) loading modified to 3:1 ratio.

Figure 13. (a) Shape optimization problem definition of a connecting rod with five design variables, (b) original square plate geometry and
equivalent stress distribution.

η = 8.428% η = 0.838% η = 0.404% η = 0.944%

σ max =1198.9Nmm−2σ max =1202.1Nmm−2σ max =1199.9Nmm−2σ max =1086.6 Nmm−2

(a) (b) (c) (d)

Vfin = 346mm3Vfin = 332mm3 Vfin = 344mm3 Vfin = 368mm3

Figure 14. Various solutions to the connecting rod problem obtained by adjusting analysis model parameters or a design constraint. (a)
Base line optimal design; (b) with accurate, adaptive FEM; (c) with accurate, adaptive FEM and quadrilateral elements; (d) with accurate,
adaptive FEM and relaxed side constraint.
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Vori = 2904mm3 Vori = 2904mm3

σmax = 1198.9Nmm−2σmax = 668Nmm−2

(a) (b)

Figure 15. (a) Initial design of the connecting rod; and (b) best
optimal solution.

FEM of the final shape revealed a 7% violation of the stress
constraint.

5.2 Topology optimization

In this example topology optimization by the penalization
method is employed to find the optimum supporting struc-
ture of an aircraft, which interconnects a pair of fixed, solid
components for the design domain shown in Figure 16a. The
optimization problem is formulated as a volume minimiza-
tion problem with a constraint on the compliance value. Once
the design with a minimum volume is obtained and due to
the presence of grey zones, a final “cleaning up” of the opti-
mized model is performed by choosing the elements with
a material density higher than 40%. The optimum design is
finally depicted in Figure 16b. Large scale problems currently
solved in the aerospace industry have two million FEs and
include up to 40 load cases while minimizing the structural
mass subject to stress and buckling constraints.

5.3 Size optimization

A preliminary design of a composite hat-stiffened skin panel
is considered here, it is an upper cover of a typical passenger

Figure 17. (a) Hat-stiffened skin panel; and (b) single module design variables.

Figure 16. Topology optimization of an aircraft structure with fixed
components. (a) Initial design. (b) Optimum design (example pro-
duced with Hyperworks v9.1).

bay in a BWB transport airplane. This panel is made of lami-
nated composite material with identical stiffeners running in
the x direction, as shown in Figure 17a and as inspired by
the work done by Vitali et al. (2002). The loading conditions
assumed for the panel are: an internal pressure and a compres-
sion along the x direction. A linear elastic orthotropic material
is assumed for the panel. Considering the thicknesses ts and
tf, tw, tc as design variables (see Figure 17b), a size opti-
mization problem can then be formulated using the panel
mass as objective function, together with stress and buckling
constraints.

Buckling modes for the initial and optimum designs are
shown in Figure 18, depicting in detail the location and the
deformation of the structure for the lowest buckling mode.
The buckling occurs only in the web of the profile on the sym-
metry plane. Localization of the instabilities can be observed
in both designs. Nevertheless, the optimum design shows a
qualitative change of the buckling mode with respect to the
initial design shown in Figure 18a.
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Figure 18. (a) Buckling modes contours for the initial; and (b) optimized panel.

5.4 Shape versus topology optimization

The classical, so-called “MBB beam” problem is considered
here in order to compare the BPM shape optimization method
and topology optimization by the penalization method. The
optimization problem is first formulated as the minimiza-
tion of the structure’s volume with a maximum vertical
displacement and von Mises stress as constraints. Due to

symmetry, computations are performed in only one half of the
domain.

The initial domain and the boundary conditions used for
the topology optimization are shown in Figure 19a. An opti-
mum layout of the structure with intermediate dense elements
is obtained, which is subsequently enhanced by discarding
the elements with a density lower than a certain value. This
leads to the optimum design shown in Figure 19c.

Figure 19. Initial and final design by means of topology (a,c) and shape (b,d) optimization (example produced with Hyperworks v9.1).
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Applying the BPM shape optimization method to the ini-
tial design shown in Figure 19b, with the control points
of B-splines governing the shape of the holes chosen as
design variables, the optimal design shown in Figure 19d is
obtained.

Both designs meet the same displacement and stress con-
straints. However, it can be observed that, the volume of the
structure obtained with the topology optimization method
is considerably less than the one obtained with the shape
optimization method. This is due to the ability of the for-
mer methodology to find the optimum load path of a given
structure, but with a non-smooth definition of the boundary
curves as drawback. Since the shape optimization method
allows finer details of the boundary to be controlled, it is thus
common practice to integrate both methods. This is shown in
the next two examples.

5.5 Fully integrated engineering design
optimization

5.5.1 Rib design using topology, shape, and size
optimization techniques

The design of the leading edge droop nose rib shown in Figure
20a is a complex process as a large number of design variables
are involved. Upscaling previous design solutions proved
to be unsatisfactory. Therefore, the topology optimization
method was selected as the first step in the design process
to give a rational basis for a designer to select the initial
domain for subsequent size and shape optimization. In this

Figure 20. Fully integrated design optimization of an aircraft com-
ponent. Reproduced with permission from Krog et al. (2004) c©
Altair Engineering, Ltd.

first step, the objective function is chosen as the compliance.
The optimal load paths of Figure 20b are then obtained with
considerable mass reductions. Since the image obtained from
the topology optimization design is not very distinct, image
extraction techniques are used and the geometric model of
Figure 20c is obtained. For the size/shape optimization step,
the design variables are chosen as the height/thickness of the
vertical stiffeners, and the thickness of the horizontal seg-
ments. The rib’s mass is taken as an objective function, with
both stability and stress constraints, together with a reduction
factor for fatigue applied to the von Mises allowable stress.
The results are depicted in Figure 20d with a further reduction
in mass.

5.5.2 Fly-wheel design using topology optimization
and shape optimization with adaptivity

This section describes the fully integrated design optimiza-
tion process of a fly-wheel structure, which includes mesh
adaptivity based on a-posteriori error estimation of the FE
solution. The fly-wheel is subjected to a centrifugal load, as
volume force, resulting from its rotation, and a Neumann
boundary condition over the external boundary. The opti-
mization process starts with the initial design shown in Figure
21a. The optimum layout of the fly-wheel is obtained by
applying topology optimization. Considering a set volume
fraction, the fly-wheel’s normalized compliance is consider-
ably reduced and the structure’s layout, shown in Figure 21b,
is found. Next, the set of key points depicted in Figure 21c
are identified and used for the boundary representation of a
new design with a cubic B-spline interpolation. Shape opti-
mization with adaptive FE is then performed starting from
the initial mesh depicted in Figure 21d. Adopting the total
mass of the fly-wheel as objective function, together with the
maximum principal stress value and a maximum error of the
FE solution as constraints, the final design shown in Figure
21e is obtained.

6 CONCLUDING REMARKS

This chapter has introduced continuous optimization built
around the three-column concept. Depending on the selec-
tion of the design variables, the mathematical formulation of
the problem, the parameterization and the available optimiza-
tion algorithms, different types of optimization problems
have been illustrated. Finally, a set of examples highlighting
achievements and also difficulties have been carefully devel-
oped with the aim of illustrating the practical application of
such techniques.
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Figure 21. Fully integrated design optimization of a fly-wheel. (a) Initial design; (b) optimum topology; (c) boundary detection; (d) Initial
mesh for shape optimization; (e) Optimum shape w/mesh adaptivity. Reproduced with permission from Sienz et al. (1999) c© Saxe-Coburg
Publications.

The topology optimization method gives a rational basis
for a designer to select the initial domain. This is due to its
ability to find the layout for a structure, but with a non-smooth
definition of the boundary curves as drawback. Size and
shape optimization techniques instead allow already existing
boundaries to be controlled in more detail. Fully integrated
methods, where topology, size, and shape optimization tech-
niques are included, are common practice in the aerospace
industry. Accuracy of the discrete solution of the underlying
analysis is essential; error estimates together with adaptive
mesh generation can be used to achieve this.

Most of the concepts described above can be found in com-
mercially available computer-aided engineering (CAE) tools
commonly used in the industry, such as ALTAIR HYPER-
WORKS, ANSYS, and NASTRAN. Typically, they have
a wide range of tools within one software framework or
workbench to solve large scale optimization problems by
combining performance data management, process automa-
tion, good data exchange facilities with robust, reliable
meshing tools and general purpose, accurate FE solvers for
structures, fluids, thermal, acoustic, electromagnetic, and/or
multiphysics problems. Various optimization technologies
for automated, optimal engineering design complement the
CAE tools, using topology, size or shape methods, or a combi-
nation of them, to simultaneously satisfy objectives and meet
constraint targets for stiffness, strength, durability, crashwor-
thiness, noise and vibration, mass, cost, manufacturability,
and reliability. These powerful tools for solving engineering
design problems with increasing complexity are very helpful

for lesser-experienced design engineers, but exploiting their
full potential needs extensive experience so that the results
are always optimal and feasible solutions.
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