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1 INTRODUCTION

Designersintuitively make decisions regarding the choice of
material, the shape of the design space, and the distribution
of the material in it in order to realize efficient and robust
designsthat are light and strong as required in the aerospace
industry. This experience-based approach has worked well
over the decades. But it is not satisfactory anymore for
advanced solutions in demanding applications; human intu-
ition might simply miss out on interesting, better designs.
Engineering design optimization aims to overcome this by
efficiently searching the design space in an automatic and
systematic manner for optimal design solutions employing
various mathematical, engineering, and computational tools
in one framework.

Structural engineering design optimization aims to mini-
mize ameasure or acombination of measures of astructure’'s

performance, such as the weight, stiffness, compliance,
frequency, for a given set of design variables. Different
parameters can be chosen as design variables, such as geo-
metrical properties, material properties, or loadings. Such
variables are mathematically adjusted during the automatic
design process and are constrained to satisfy physical and
manufacturing requirements.

A general simulation-based optimal design processishbuilt
around the synthesis of several disciplinesasdescribedinthe
three-column concept by Braibant and Fleury (1986) (see
Figure 1). Thisprocess consistsin the choice of (i) a(design)
optimization model (ii) an analysis model, and (iii) the opti-
mization algorithms.

The optimization model represents the link between
the structural model and the optimization algorithms. This
enables the transformation of the design optimization prob-
lem into a parametric optimization problem. Such link is
realized through the design parameterization process, which
involves mainly two steps. the geometric modelling and the
designvariabledefinition. First, onebuildsageometric model
with the definition of all of its dimensions. Then, one identi-
fiesthe design variables as a subset of the geometric/physical
parametersthat characterizethestructure. Theanalysismodel
refers to the mathematical determination of the physica
behavior of thestructure. It representsthestructurein termsof
asystem of ordinary and/or partial differential equationswith
unknown structura responses such as displacement, veloc-
ity, and stress fields. Numerical methods are usually used to
obtai n approximate solutions to a given accuracy, such asthe
finite element method (FEM). The optimization algorithms
denote the suite of numerical proceduresthat solve the actual
optimization problem, such asmathematical programming or
discreteoptimality criteriamethods (see Review of Optimiza-
tion Techniques). The algorithms can be classified in various
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Figure 1. Simulation-based optimal design process. The three-column concept: () Design problem: given the loads and the supports, what

isthe “best” structure?; (b) three-column concept; (c) detailed aspects.

manners, such as local/global, gradient-based/gradient-free
or deterministic/probabilistic-stochastic methods.

Further aspects are the sensitivity analysis (see Sensitiv-
ity Analysis) for gradient-based optimization (see Review of
Optimization Techniques) and an interactive graphical user
interface. In Hornlein and Schittkowski (1993), some early
implementations of the three-column concept or variations
of itin computer codes such as CARAT, SAPOP, CAOS, and
OASIS, are described. Later, Sienz and Hinton (1997) added
accurate FEM incorporating error estimation (see Error Esti-
mation and Quality Control) and adaptive mesh generation
(see Adaptive Mesh Generation and Visualization). Some
aspects can a so be found in Keane and Nair (2005).

The objective of thissectionistoillustrate apractical real-
ization of an optimization problem in structural engineering
design, which includes the selection of the design variables,
the mathematical formulation of the problem, the parameter-
ization and finally the optimization algorithms available for
the resolution of that specific type of problem. With that aim,
different optimization techniques including topology, size,
and shape optimization are carefully formulated in their con-

tinuous and discrete approaches. Advanced technol ogiesusu-
aly involved in the resolution of practical problems are also
briefly reviewed, such as modelling, analysis by the FEM,
mesh generation, error estimation, and adaptivity. Finaly,
severa illustrative examples concerning structural engineer-
ing design optimization in the aerospace industry are given.

The reader is referred to Computational Optimization for
details on computational optimization.

2 TOPOLOGY, SHAPE, AND SIZE
OPTIMIZATION

Structural optimization problems are generally classified as:

® Topology optimization: Thebest performance of astruc-
tureis obtained by finding the optimal material and shape
connectivity for a structure within a specified region. For
continuum structures this could mean to optimally place
a given amount of material in a given domain to form a
structure with outer boundaries and inner openings. For
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trusstypestructuresit could mean adding/removing mem-
bersbetween joints. Topology optimizationisparticularly
useful in the conceptual design phase (Figure 2a-b).
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Figure2. Structural optimization. Topology optimizationfor acon-
tinuum structure: (a) Original layout; (b) optimized topology. Size
optimization for a discrete structure; (c) original layout; (d) opti-
mized structure. Shape optimization for a continuum structure: (f)
original layout, (g) optimized shape.

® Size optimization: The best performance of a param-
eterized structure is obtained by updating geometrical
variables, such as the thickness of a continuum structure,
or thediameter of themembersof adiscretestructure. Size
optimization is generally used to find the optimal cross-
sectional area of beams and stringers, or the thickness of
plates and shells (see Composite L aminate Optimization
with Discrete Variables) (Figure 2c—d).

® Shapeoptimization: The best performance of astructure
is obtained by looking for the best shape of the domain
by simply modifying the existing boundaries of the ini-
tial domain (Allaire, 2007). Shape optimization is, for
instance, used to optimize the shape of a given (or sug-
gested) rib structure that would give the minima mass
under some specified loading conditions and constraints
(Figure 2f—g).

Aircraft componentsare structurally often designed based on
stability requirements. In this case, the use of the FEM for
the optimization of such components usualy follows a two-

phase design process. First, an initial design is obtained by
performing topology optimization. This is then followed by
detailed sizing/shape optimization techniques, where stabil-
ity, stress and manufacture constraints can easily beincluded
(see Section 5.5).

2.1 Topology optimization

For structures, topology optimization involves search-
ing for the optimal connectivity within a given design
gpace. For continuum structures this typically means
adding/removing/redistributing material within a specified
region generating layouts with outer boundaries and inner
openings, whereas for truss structures the problem consists
in finding the optimum configuration and spatial sequence of
members and joints.

This section exemplifies the method for continuum struc-
tures, with focus on the material distribution method. In this
method weareinterested in the optimal distribution of agiven
material in spaceby determiningwhich pointsof space should
be material points and which points should be voids.

Mathematically, the problem is formulated as follows.
GivenadesigndomainQ € R’ (d= 2, 3), aclassical problem
of topology optimization consists of finding the subdomain
Qma C Q that yields the minimum compliance of the struc-
ture, that is, the minimum val ue of the external work, assumed
as a measure of the global rigidity of the structure. Other
objective functions can also be used in engineering applica-
tions, such as the weight, the cost, or the maximum stressin
apoint. The design domain €2 can then be described in terms
of the characteristic function y = x(x) that is equal to one
at the points of the reference space that should be material
points, andisequal to zero at those pointsthat should bevoids
(no material). Denoting by ¢ the traction force applied on a
fixed part 'y of the boundary of the domain €2 and by g the
specified displacement along the boundary T'p, the classica
topology optimization problem can then be formulated as

Find x(x) for x € @ such that minimize
/ ) t-uds (Compliance)
N
subject to the constraint on the volume
| s < gl ®

with ¢ = |Qma|/|2| € [0, 1] the assigned volume frac-
tion, |£2| the volume of the domain 2 and u solution of the
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4 Aerospace System Optimization

equilibrium equation

/ o(u) : e(m)dx = / tuds foranyu =0o0nTy
Q I'n

u=gonlp
o(u) = xD : e(u)

where D isthe material stiffness and e(u) isthe strain.

Equation (1) isaninteger optimization problem that canbe
transformed into acontinuous optimization problem (Allaire,
2007) using either the homogeni zation method (Bendsge and
Kikuchi, 1988; Hassani and Hinton, 1999) or the penalization
method (Bendsge and Sigmund, 2003; Zhou and Rozvany,
1991) or the relaxation method (Strang and Kohn, 1986)
or some heuristic methods, such as the evolutionary method
(Xie and Steven, 1997; Hinton and Sienz, 1995). Regardless
the optimization method used to find the optimum layout of
the structure, the result is usualy a distribution of materia
density (seeFigure3) intermsof agrey scalegeometrical rep-
resentation of the structure, wheretypically black isassigned
to a finite element when x = 1, that is, it is solid, white

when x = 0O, that is, itisvoid, and the different grey intensity
for 0 < x < 1. Theoptimal topology is afterwards discerned
using somekind of imageprocessing or intuitively using engi-
neering judgement. In the following, only the homogeniza-
tion and the penalization method will be described, referring
tothecited literaturefor other approaches, such asthose men-
tioned above and further methods for topology optimization,
for example, level set methods (Wang, Wang and Guo, 2003).

Following original development of the classical formula-
tion as given in equation (1), it is now possible and common
practice to employ more commonly used engineering design
specifications, such as, weight minimization subject to stress
constraints.

2.1.1 Topology optimization by homogenization

Materialswith aspatially varying microstructure (e.g., Figure
4b) can be introduced to describe the varying material prop-
ertiesin space. That is, at the microscopic level, the material
model is considered to have aperiodic structure with unit cell
Y madeof voids(x = 0) andthegiven material withitselastic-
ity tensor D (x =1). At the macroscopic level, the material
model is then described by a homogeneous material with
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Figure 3. Topologica design using the material distribution method.
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Figure 4. Topology optimization by distribution of a pre-defined type of composite material: (a) global problem; (b) unit cell Y with

definition of the geometric variables (a,b,6).

Encyclopedia of Aerospace Engineering, Online © 2010 John Wiley & Sons, Ltd.

Thisarticleis© 2010 John Wiley & Sons, Ltd.

This article was published in the Encyclopedia of Aerospace Engineering in 2010 by John Wiley & Sons, Ltd.

DOI: 10.1002/9780470686652.ae498



Continuous Optimization in Aerospace Structures 5

density 0 < p < 1 and homogenized elasticity tensor DM, To
exemplify the method, consider the fixed reference domain
Q C R? as shown in Figure 4a. The design variables of the
optimization problemare, for the chosen periodic microstruc-
ture depicted in Figure 4b, the geometric variables a, b, and
6. The (pseudo-) density of the unit cell will then be given by
p=1—abwithp € [0, 1] wherep = 0and p = 1represent
the state of void and solid, respectively.

By using the FEM for the solution of the equilibrium equa-
tion (1), the type of interpolation functions for the design
variablefidds (a(x), b(x), 6(x)) and for thehomogenized dis-
placement field u = u(x) needs to be selected. In one of the
early implementations of this concept, realized in Bendsge
and Kikuchi (1988), it is assumed that each finite element
has a specific celular type of microstructure. This means
that in this case the field of the design variables is approx-
imated by piecewise constant functions A = (Ay, ..., AN)
with Aj = (a;, b;, 6;) and N the number of finite elements.
The finite element based topology optimization in this case
then can be formulated as

Find A = (Ay, ..., AN) such that minimize
f(A) = F'U, (Compliance) 2
subject to the constraints

0<a<l o<bx1l

N
i=1

and U solution of the discrete homogenized equilibrium
equation

P(o)— F=0
o =D":¢e()
U=gonlp

with DM eval uated at the Gauss point of the finite element.

A numerical algorithm based on the optimality criteria
of equation (2) has been proposed by Hassani and Hinton
(1999). Inherent in the homogeni zation method, the structural
analysis requires a two-step analysis. the solution of the cell
problem in order to eval uate the effective el asticity tensor D™
for each FE, and the solution of the homogenized problem.
Aninteractive on-line MATLAB implementation of an FEM
solution based topol ogy optimization formulationfor the case

of compliance minimization of statically loaded structures
can be found in Sigmund (2001).

2.1.2 Topology optimization by penalization

The penalization approach introduces a penalty in order to
replace the integer variables of equation (2) with continuous
values. This is for instance, realized by the so-caled solid
isotropic material with penalization model (SIMP) (Bendsge
and Sigmund, 2003) that introducesacontinuousvariablep €
[0, 1] that resembles the density of a fictitious material of
stiffness tensor D defined as follows

D(p) = p"D° ©)

with DO the stiffness tensor of the solid material and p
the penalization factor (see Figure 5 for a graphical rep-
resentation of this function). The shape of this function
helps to achieve the goa of finding a design consisting
mainly of void or solid areas by penalizing intermediate
solutions. The optimal topology problem is therefore con-
verted into an optimization problem on afixed domain Q2 as
follows

Find p(x) for x € Q such that minimize
/ t-uds (Compliance) 4
I'n
subject to the constraints

/ p(x)dx <oV  0<p<1
Q

and u solution of the equilibrium equation

/ o(u): e(fi)dx = / iids for any i = OonT'y
Q I'n

u=gonlp
o=p"D’: e(u)

The density bound, pmin, is introduced to avoid a singu-
larity in the FE equations whereas a sufficiently big value
of p, that is, p > 3, makes the stiffness tensor less than
proportional to p. Considering an FE discretization of the
reference domain with N FEs, the density p is approximated
as element-wise constant and represented by the vector: p =
01, ..., pPn- The discretized topology optimization problem
becomes
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pP

Figure 5. Graphical representation of the function p? for different
values of the penalization factor p.

Find p = (o1, ..., pn) such that minimize
f(p) = UTF = Compliance (5)
subject to the constraints

N
> JVipi =9V 0<pmin<pi=<1
=

and U solution of the equilibrium equation

N
(Z p,»”Ki> U=F
i=1

whereK;| isthe (global level) stiffnessmatrix of theelement i.
For other formsof penalization, see Allaire and Kohn (1993).
The heuristic iterative procedure, proposed in Bendsge and
Sigmund (2003), to solve such a problem transformsthe first
order optimality conditions of equation (5) into afixed-point
equation of the form

pPi = ,O,'(Bl')'7 for i=1...N (6)
with B; = —(9f/9p;)/aV;, a the Lagrange multiplier associ-
ated with the volume constraint and, §—g = —pp,-pflU,»TK,-U,»
the sensitivity of the objectivefunction. Notethat an optimum
is reached when B; = 1 and pmin < p; < 1. The numerical
procedure is described in equation (7), and Figure 6 shows a
flow chart of the structural topology optimization procedure.

(@ k=0pf=05fore=1,..N
j=00a =1=10000m “move limit” with m=0.2
as suggested value

(b) Fore=1,... N, evauate pkt? = p&(BX)" with BX =

o/ Ve
maX(omin, pe — m) if P{?l < max(pmin, P]é —m)
w1 _ ) P if max(pmin, o — m)

Pe < pktt < min(1, ok +m)

if min(1, ok +m) < pitL

min(1, p]é + m) (7

© 1N Ve > oV
al=alf2,j=j+1,GOTO (b)

(d) Compare p&+t with ok TO STOP
Otherwise SET k=k+1 and GO TO (b)
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and for the design variables

(e.g.p, 0)
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distribution of p (table 2.) DH
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FE analysis
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scheme for the new p,a
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Figure 6. Flow charts of the numerical agorithms for topology
optimization problems.
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Figure 7. Typical numerical instabilities in finite dimensional topology optimization: (a) Checkerboard. Reproduced from Hassani and
Hinton (1999) (© Springer-Verlag; (b) local minima Reproduced from Sigmund and Petersson (1998) (©) Springer-Verlag; (c) Reproduced
from Sigmund and Petersson (1998) (© Springer-Verlag and (d) mesh dependence for 600 and 5400 elements, respectively. Reproduced

from Sigmund and Petersson (1998) (©) Springer-Verlag.

2.1.3 Numerical instabilitiesin finite element based
topol ogy optimization

The finite dimensional topology optimization problem, in
general, can be solved using different methods of nonlin-
ear programming such as: optimality criteria methods (e.g.,
SIMP method in Section 2.1.2), sequential linear program-
ming methods, or other methodsfor constrained optimization
(see Review of Optimization Techniques). However, one
must be aware of the common numerical instabilities that
appear in topology optimization. These can manifest as (see
Figure 7):

® checkerboard: formation of regions of alternating solid
and void elements ordered in a checkerboard fashion;

® mesh dependence: qualitatively different solutionsfor dif-
ferent mesh-size or discretizations;

® local minima; different solutions to the same discretized
problem when choosing different methods.

Different methods have been proposed to cure these prob-
lems. Among others, these are: the use of higher-order FE for
the displacement function to avoid the checkerboard problem
(Hassani and Hinton, 1999); the perimeter control method
(Haber, Jog and Bendsoe, 1996), which limits the number of
holesthat can appear in adomain; filtering techniques, which
limit the variation of the densities that appear in the set of
admissible stiffness tensors (Sigmund and Petersson, 1998),
relaxation by homogenization method to avoid mesh depen-
dency (Bendsge and Kikuchi, 1988), and the continuation
method to avoid local minima (Allaire and Kohn, 1993).

2.2 Sizeoptimization

Thistype of structural engineering design optimization prob-
lem is the best exemplified by the design of the optimal
thickness distribution of an elastic plate that occupies a

domain € with boundary 92 and yieldsthe minimum weight,
for such structuresor the cross section optimization of trusses.
Concentrating on a plate, let 2(x) denote the plate thickness
representing the design variable, a size design optimization
problem can be then formulated as follows (Allaire, 2007).

Find 2 (x) for x € © such that minimize

[ e (weighy ®)
Q
subject to the constraints
o, <o
/ h(x)dx = holR2]  hmin < h(x) < hma
Q

with kg a given average thickness and u solution of the
static equilibrium equation

/ h(x)o(u) - e(ii)dy = / ¢.iidx foranyii = OonaQ
Q Q

o=2D:e(u)

In equation (8), o denotesthe material density, g the grav-
itational acceleration, o, the von Mises equivaent stress,
which is a function of the current stress state, whereas o*
is the prescribed maximum stress.

Size optimization iswidely used in the aerospaceindustry,
where h(x) can represent not only the structure’s thickness,
but also the frame height, the stringer height, or the cross
section area. For continuous composite material structures,
sizing optimization is used to determine the thickness of each
layer. Additionally, theply angleshould beoptimizedfor such
structures (see Composite Laminate Optimization with Dis-
crete Variables for further details). The problem given above
is generally augmented by additional constraints, which are

Encyclopedia of Aerospace Engineering, Online © 2010 John Wiley & Sons, Ltd.

Thisarticleis© 2010 John Wiley & Sons, Ltd.

This article was published in the Encyclopedia of Aerospace Engineering in 2010 by John Wiley & Sons, Ltd.

DOI: 10.1002/9780470686652.ae498



8 Aerogpace System Optimization

related to the control of displacement, buckling, fatigue, flut-
ter, and manufacturing constraints.

For stability requirements one can have constraintsin the
form of

)»]_ >1 (9)

where ), isthe smallest positive el genvaluefor compression-
loaded structures, and is given by solving the following
generalized eigenval ue problem:

(K — AKg)U =0 (10)

where K denotes the stiffness matrix of the whole structure
or of the structural component, according to whether aglobal
or local buckling analysis is carried out, respectively, K¢
the geometric stiffness matrix, A an eigenvalue, and U the
corresponding eigenvector. The matrix K¢ is a component
of the global stiffnessmatrix K that arisesfrom the nonlinear
form of the strain-displacement equations (Zienkiewicz and
Taylor, 2005; Bazant and Cedolin, 1991). If K is replaced
by the mass matrix, equation (10) represents the undamped
free vibration equation and equation (9) would correspond to
aconstraint on the frequency.

It isworth noting that when alarge number of design vari-
ablesand constraintsareinvolved inthe optimization process,
such asfor the size optimization of the skin, stringers, frames,
longerons, and doors of the rear fuselage shell structure
shown in Figure 8, extremely large computational resources
arerequired (Stettner and Schuhmacher, 2004). In this case,
the large optimization problem can be broken into a series
of smaller problems but this involves some approximations.
The decomposition process identifies groups of design vari-
ables and constraints that interact closely with each other

Cargo door

e

Ramp

E

Longerons

Figure 8. Finite element model of arear fuselage shell structure.
Reproduced with permission from Stettner and Schuhmacher (2004)
© Altair Engineering, Ltd.

within the same group, but interact weakly with the rest of
the design variables. In this case, the original problem can
be broken down into a series of problems that can be solved
independently (for further details on the topic refer to Haftka
and Gurdal, 1992).

2.3 Shapeoptimization

Shape optimization can be defined as an optimal design prob-
lem where the design variable is the shape of the domain
Qma- To better illustrate the problem at hand, let an initial
domain © with volume Vg and boundary 0 Q =T UT'p UT'y
be given. The part of the boundary I" isthe one that can vary,
whereas I'p and I'y are respectively where displacements u
and traction forcesf are prescribed. Using weight minimiza-
tion as an example, the shape optimization problem can then
be formulated as follows:

Find Qma C €2 such that minimize
/ godV  (Weight) 11
Vinat

with V(Qma) = Vo and u the solution of the equilibrium
equation

/ o(u) : e(m)dx = / t-udsforanyu = 0onT'p
Qmat I'n

u=gonlp
o=D:e()

where Qmaisobtained by only “moving” thefreeboundary T".
Note that one of the main difficulties hereis that the domain
Qma 1S variable. The most common approaches proposed in
the literature to solve shape optimization problems are (see
Figure 9): the boundary parameterization method (BPM) and
the Hadamard boundary variation method (Sokolowski and

L W

L

(@) (b)

Figure 9. Shape optimization approaches. (a) Boundary parame-
terization method; (b) Hadamard boundary variation method.
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Zolesio, 1992) or the so-called continuous based differentia-
tion approach.

2.3.1 Boundary parameterization method (BPM)

In the BPM thefirst step isto discretize the domain © into a
finite number of elements. The boundary istherefore charac-
terized by the mesh nodes, which are called control nodesand
will be moved in the optimization process. Common practice
is not to use al the boundary nodes in order to describe or
modify the shape of a given structure, but an interpolation
of the control nodes using splines, polynomial functions, and
so on, (for further details, see Airfoil/Wing Optimization).
Since a set of real parameters z are needed to describe such
functions, for example, the position of the control nodes of
splines, such parameters are used as the design variables of
the shape optimization problem and equation (11) can be
written asfollows:

Find z € R? such that minimize

fR)=3"" &Vips = Weight (12)

with: V(z, X(z)) = Vo and U(z) the FE solution of the
discrete state equations over Qma(2)

K(X)U=F

where, X(z) gives the position of the FE nodes related to
the position of the boundary control nodes.

A design sensitivity analysis (see Sensitivity Analysis) is
then performed by differentiating the discrete form of the
structural governing equations (12).

2.3.2 Hadamard boundary variation method

TheHadamard boundary variation method, on the other hand,
isbased on theideathat the boundary movesaongits normal
and the admissible domain 2 is parametrized in terms of a
given class of functions. Considering an initial smooth open
set Q c RY ford=2, 3and amap 0: @ — R?, the domain
Qma 1N equation (11) can be expressed as

Quma = (Id + 0)Q2 (13)

where for a small vector field 6, (Id + 0) is an admissible
deformation of ©2. The domain Q¢ can be now interpreted
as an image of a one-to-one mapping of €2 and eguation (11)
can be reformulated as follows

Find 6 such that minimize
/ gpdV (Weight)
\%

with V((1d + 6)2) = Vp and u solution of theequilibrium
equation

f(1d+o)9"(") re(@)dx = [, ¢t-@ds foranyit =0onTy
u=gonlp

o=D:e(u) (19

In view of the application of the gradient method (see
Review of Optimization Techniques) to solve equation (14),
the notion of shape derivative f/(R2) at Q isintroduced as

f((1d + 0)()) = f(Q) + /()8 + o(6) (15

where |imﬁolﬂg’|>“ = 0and /()0 is called the directional
derivative of f indirection of 6. By the Hadamard structure
theorem (Sokolowki and Zolesio, 1992), f/(©2)6 is a scalar
guantity defined on the boundary T that depends only on the
normal trace 6-n asfollows

1'(Q0)0 = . (t-u)(6-n)ds (16)

A physicd interpretation of equation (16) is that the
domain needs to be reduced (i.e., @ - n < 0) to minimize the
compliance. For more details on the subject, the reader is
referred to Allaire (2007).

The discrete equation (12) and the discrete form of
equation (14) — obtained, for instance, by introducing
an FE approximation of # - have the form of a classical
finite dimensional constraint optimization problem (see
Formulating Design Problems as Optimization Problems)
and can therefore be solved by standard techniques of
mathematical programming. Mathematical programming
consists basically of the calculation of the objective function
value and itsgradientswith respect to the design variablesfor
a feasible solution (i.e., sensitivity anaysis, see Sensitivity
Analysis) and the calculation of a localy feasible change
of the design variables. These two steps are repeated until
a local minimum is reached. A flow chart of the shape
optimization procedure with adaptivity, as proposed in Sienz
and Hinton (1995, 1997), is then depicted in Figure 10.

In the course of a shape optimization process, the design
may change considerably and the initial domain discretiza-
tion (FE mesh) can lead to non-optimal designs. Adaptive
procedures are then necessary to adapt the domain discretiza-
tion to the current state in the optimization process. This
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| Define initial design |
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Generate the FE mesh |4 Evaluate New |q—
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‘r>| FE analysis |»>| Estimate error |— @
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Generate new shape

v

=

Yes,

Figure 10. Flow charts of the numerical algorithmsfor shape opti-
mization with adaptivity.

includes both the adaptation of the discretization of the shape
to the optimum structure and the adaptation of the discretiza-
tion of the state variables (such as displacements) to the
structural response.

2.3.3 Algorithmic details in shape optimization

Severd agorithmic difficulties can be met when running a
shape optimization problem, such as:

® oscillating boundaries, which can be solved by regulariz-
ing themesh, that is, smoothing themesh at eachiteration;

® gingularities on the displacements, usually at the shape
corners or changes of boundary conditions, for which the
shape gradient can be set to zero near the corners;

® volume congtraint oscillations, when the volume con-
straint is not exactly enforced before convergence.

3 GEOMETRY MODELING AND GRID
GENERATION

Engineering design optimization devel ops solutions that are
at thelimitsasdefined by the constraints. It istherefore essen-
tial to ensure that the underlying analysis is accurate and it
correctly representsthe behavior of the optimized structure—
error estimates together with adaptive mesh generation can
be used to achieve this.

By applying the FEM, the continuous constrained opti-
mization problem is transformed into a finite dimensional
one by introducing an FE approximation of the continuous
variables (see Formulating Design Problems as Optimization
Problems). The construction of such approximationsrequires
a partition of the continuous physical domain  c R? for
d=2, 3 into simpler geometric elements, which is caled
mesh, whereas the process of constructing the meshiscalled
mesh generation.

The main objective of a mesh generation procedure is to
obtain agood quality mesh, that is, the mesh conformsto the
geometry of the physical problem one wishes to model, and
it also delivers the best possible numerical accuracy with the
least number of elements. In general, this is obtained with
grids composed of elements of appropriate sizes, possibly
varying throughout the domain, and being of good quality
shape as given by a quantitative definition of the quality of a
mesh (Loehner, 2008; Frey and George, 2000).

The mesh quality measures account indirectly for the
parametersthat influencethe accuracy of thediscrete solution
whereas a-posteriori error estimates provide an estimate of
theerror of thediscrete solutionin termsof only known quan-
tities, that is, mesh element size and shape, problem dataand
the computed discrete solution. If one denotesby T';, amesh
of sizeh on 2, u the exact solution, u,, the discrete solution,
and ||u — uy|| thedistance between thetwo functions, that is,
the exact error, one says that e(T'y,, problem data, u;) is an
a-posteriori estimate of the error if abound of the following
type, called reliability estimate, holds

|lu — uy|| < e(Ty, problem data, uy) an

with e(T},, problem data, u;) required, for instance, to
approach zerofor 4 — Oandu; — u. By iterating such pro-
cess, one can then envisage amesh adaptive algorithm, which
consists of successive loops (Morin, Nochetto and Siebert,
2002; Carstensen and Orlando, 2005). Sienz et al. (1999)
integrated adaptive FEM into an overall shape optimization
algorithm (see Figure 10) ensuring that the optimal design
solution is based on accurate analyses.

For further details on error estimation and adaptive mesh
generationthereader isreferred to Error Estimation and Qual -
ity Control and Adaptive Mesh Generation and Visualization.

4 STRUCURAL ANALYSISBY THE
FINITEELEMENT METHOD

The performance of the structure and the constraint functions
limiting the design in an engineering design optimization
loop is typically evaluated using the FEM. The discrete
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equationsof the FEM areobtained by using FE interpolations
of the displacement and strain in the form

u=NU and e(u)=BU (18)

with U the time dependent nodal displacement vector, N
the matrix of the element shape functions and B the one
containing the derivative of the shape functions.

The discrete form of the balance of momentum over the
domain 2, iswritten then as follows

MU + P(6) — F =0 (19)

where M =Y M®, P =3 _P® and F =Y . F©. The
element arrays are defined by

B'odQ and
Qe

MO = NTpNdQ P© = /

Qe

NTbdQ +

Qe I'ne

F© = NT¢dr (20)

with Qe theelement domain, Ty, = 92 N Ty the part of the
boundary where the external traction forcest are prescribed
and b isthe body forces vector.

In the case of linear elagticity the constitutive equations
is given by o = De, with D the material modulus tensor,
obtaining the elemental stressforce

p® = < / B'DB dQ> U=K°U (21)
Qe

with K@ is the global element level stiffness matrix. For
more details on thistopic the reader isreferred to Fundamen-
tals of Discretization Methods, Finite Element Analysis of
Composite Plates and Shells, Meshfree Discretization Meth-
odsfor Solid Mechanics, Extended Finite Element Methods,
Error Estimation and Quality Control, Adaptive Mesh Gener-

pl2
(S5 S O O

ation and Visualization, Computational Methodsin Buckling
and Instability, Thermal Analysis, Computational Dynamics.

5 NUMERICAL EXAMPLES

5.1 Influence of optimization problem definition
on outcome

The optimal design of a given square plate is here anayzed
by dlightly modifying the original definition of the problem.
Theinitial design isshown in Figure 11 where an orthogonal
tensile load with a ratio of 2:1 on opposite sides is applied
to the plate. Note that only a symmetric quarter of the plate
is modelled. For the base line optimal design, there are five
design variables, which can move along radial lines to mod-
ify the internal boundary. The objective is to minimize the
volume of the structure subject to a constraint on the equiva-
lent stress. Figure 12 containsthe baselineoptimal designand
asothedifferent solutionsthat can be obtained by modifying
one parameter of the base line optimization problem.

The second problem looks at the volume minimization of
a connecting rod subject to a limit on the equivalent stress
as given in Figure 13. The aim is to demonstrate the influ-
ence of the analysis parameters and design parameters on
the optimal design. Thereis atensile load modelled asalin-
early varying line load in the bold hole. The design model
makes use of quarter symmetry. Figure 14 shows the best
sol utions obtai ned employing different FE models, while Fig-
ure 15 showsthe best solution obtained for this problem. The
importance of employing an accurate underlying FEM for
engineering design optimization ishighlighted when compar-
ing Figure 14awith Figure 14b. Although thefinal volumeis
lower for the former and the stress constraint seemsto be sat-
isfied, theformer solutionisinfeasible: asubsequent adaptive

&
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A 4 4 4 4
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(a) (b)

Vorig= 149 368 mm?3

O min = 0.78 N mm~—2
T max = 5.27 N mm~—2

(c)

Figure 11. (@) Shape optimization problem definition of square plate with five design variables; (b) original square plate geometry; and (c)

equivalent stress distribution.

Encyclopedia of Aerospace Engineering, Online © 2010 John Wiley & Sons, Ltd.

Thisarticleis© 2010 John Wiley & Sons, Ltd.

This article was published in the Encyclopedia of Aerospace Engineering in 2010 by John Wiley & Sons, Ltd.

DOI: 10.1002/9780470686652.ae498



12 Aerospace System Optimization

OOl <&

Vin=111989mm3  Vj,=112052mm3 V= 122533mm3 V4, =153320mm3 V4, = 111739mm?3
Omin=0.32Nmm-2  g,;,=0.12Nmm-2  g,;,=0.44Nmm-2

Omax=6.97Nmm—2  6,,=7.0INmMmM-2  6,,,,,=4.00NmMmM—=2  G,,=2.86NmMmM—=2  6,,.,=6.99NmMmM—=2  g;,,=7.02Nmm—2

(a) (b) (c) (d) (e) U]

Viin=113419mm3

Omin=0.37Nmm—2  6,;,=0.26Nmm-2  g;,;,=0.27Nmm-2

Figure 12. Various solutions to the sguare plate problem obtained by modifying one parameter of the baseline optimization problem. (a)
Base line optimal design; (b) starting geometry modified to a central square cut-out, rotated by 45°; (c) reduced stress constraint; (d) stress
levelling on the surface of the circular cut-out as objective function; (e) 3 radial design variables; (f) loading modified to 3:1 ratio.

8 o
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o |
124 |@ '
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Figure 13. (@) Shape optimization problem definition of aconnecting rod with five design variables, (b) original square plate geometry and
equivalent stress distribution.

Vin = 332mm3 Vi = 346mms3 Vi = 344mm3 Vin = 368 mm3

1‘C{Eﬁk
TSRS @)
n=28.428% n=0.838% 7 =0.404% n=0.944%
o~ — o= _
| ec———
Omax =1086.6 Nmm~-2 Omax =1199.9Nmm-2 Omax =1202.1Nmm-2

O max =1198.9Nmm-2

(a) (b) (c) (d)

Figure 14. Various solutions to the connecting rod problem obtained by adjusting analysis model parameters or a design constraint. (a)

Base line optimal design; (b) with accurate, adaptive FEM; (c) with accurate, adaptive FEM and quadrilateral elements; (d) with accurate,
adaptive FEM and relaxed side constraint.
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Vori = 2904 mms3

Vi = 2904 mm3

o ) T —

Omax = 668Nmm-2 Omax = 1198.9Nmm-2

(a) (b)

Figure 15. (a) Initia design of the connecting rod; and (b) best
optimal solution.

FEM of the final shape revealed a 7% violation of the stress
constraint.

5.2 Topology optimization

In this example topology optimization by the penalization
method is employed to find the optimum supporting struc-
ture of an aircraft, which interconnects a pair of fixed, solid
components for the design domain shown in Figure 16a. The
optimization problem is formulated as a volume minimiza-
tion problem with aconstraint on the compliance value. Once
the design with a minimum volume is obtained and due to
the presence of grey zones, afinal “cleaning up” of the opti-
mized model is performed by choosing the elements with
amaterial density higher than 40%. The optimum design is
finally depictedin Figure 16b. L arge scale problemscurrently
solved in the aerospace industry have two million FEs and
include up to 40 load cases while minimizing the structura
mass subject to stress and buckling constraints.

5.3 Size optimization

A preliminary design of acomposite hat-stiffened skin panel
isconsidered here, it isan upper cover of atypical passenger

11.5 MPA

1

~ o
...] rgomponenfs

(a) (b)

L

Figure16. Topology optimization of anaircraft structurewith fixed
components. (a) Initial design. (b) Optimum design (example pro-
duced with Hyperworks v9.1).

bay inaBWB transport airplane. Thispanel is made of lami-
nated composite material with identical stiffenersrunningin
the x direction, as shown in Figure 17a and as inspired by
the work done by Vitali et al. (2002). The loading conditions
assumed for the panel are: aninternal pressureand acompres-
sionalongthexdirection. A linear elastic orthotropic materia
is assumed for the panel. Considering the thicknesses ts and
ts, tw, tc as design variables (see Figure 17b), a size opti-
mization problem can then be formulated using the panel
mass as obj ective function, together with stress and buckling
constraints.

Buckling modes for the initial and optimum designs are
shown in Figure 18, depicting in detail the location and the
deformation of the structure for the lowest buckling mode.
Thebuckling occursonly intheweb of the profile on the sym-
metry plane. Localization of theinstabilities can be observed
in both designs. Nevertheless, the optimum design shows a
qualitative change of the buckling mode with respect to the
initial design shown in Figure 18a.

Figure 17. (a) Hat-stiffened skin panel; and (b) single module design variables.
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Figure 18. (a) Buckling modes contours for theinitial; and (b) optimized panel.

5.4 Shape versustopology optimization

The classical, so-called “MBB beam” problem is considered
herein order to comparethe BPM shape optimization method
and topology optimization by the penalization method. The
optimization problem is first formulated as the minimiza-
tion of the structure’s volume with a maximum vertica
displacement and von Mises stress as constraints. Due to

symmetry, computationsare performedin only onehalf of the
domain.

The initial domain and the boundary conditions used for
the topology optimization are shown in Figure 19a. An opti-
mum layout of the structurewithintermediate dense el ements
is obtained, which is subsequently enhanced by discarding
the elements with a density lower than a certain value. This
leads to the optimum design shown in Figure 19c.

P=10K P=10K
L} W
“ 1.2m
0.4m :
1 1
(a) 7 (b) &7

(d)

Figure 19. Initial and final design by means of topology (&,c) and shape (b,d) optimization (example produced with Hyperworks v9.1).
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Continuous Optimization in Aerospace Structures 15

Applying the BPM shape optimization method to the ini-
tial design shown in Figure 19b, with the control points
of B-splines governing the shape of the holes chosen as
design variables, the optimal design shown in Figure 19d is
obtained.

Both designs meet the same displacement and stress con-
straints. However, it can be observed that, the volume of the
structure obtained with the topology optimization method
is considerably less than the one obtained with the shape
optimization method. This is due to the ability of the for-
mer methodology to find the optimum load path of a given
structure, but with a non-smooth definition of the boundary
curves as drawback. Since the shape optimization method
allowsfiner details of the boundary to be controlled, it isthus
common practiceto integrate both methods. Thisisshownin
the next two examples.

5.5 Fully integrated engineering design
optimization

5.5.1 Ribdesign using topology, shape, and size
optimization techniques

Thedesign of theleading edge droop noserib showninFigure
20aisacomplex processasalarge number of design variables
are involved. Upscaling previous design solutions proved
to be unsatisfactory. Therefore, the topology optimization
method was selected as the first step in the design process
to give a rational basis for a designer to select the initial
domain for subsequent size and shape optimization. In this

Topology generation

Initial design Material layout
~35%

>0.859
| B
— <0.717
<0.576
B <0434
<0.283

i ~4

(a) ~ (b)

AAANMY

SARLROD®
88838858

A A

(d) (c) _
Size and shape optimization Image processing
geometry extraction

Figure20. Fully integrated design optimization of an aircraft com-
ponent. Reproduced with permission from Krog et al. (2004) ©
Altair Engineering, Ltd.

first step, the objective function is chosen as the compliance.
The optimal load paths of Figure 20b are then obtained with
considerable massreductions. Sincetheimage obtained from
the topology optimization design is not very distinct, image
extraction techniques are used and the geometric model of
Figure 20c is obtained. For the size/shape optimization step,
the design variables are chosen as the height/thickness of the
vertical stiffeners, and the thickness of the horizontal seg-
ments. Therib’'s mass istaken as an objective function, with
both stability and stress constraints, together with areduction
factor for fatigue applied to the von Mises allowable stress.
Theresultsaredepictedin Figure 20d with afurther reduction
in mass.

5.5.2 Fly-wheel design using topology optimization
and shape optimization with adaptivity

This section describes the fully integrated design optimiza-
tion process of a fly-wheel structure, which includes mesh
adaptivity based on a-posteriori error estimation of the FE
solution. The fly-wheel is subjected to a centrifugal load, as
volume force, resulting from its rotation, and a Neumann
boundary condition over the external boundary. The opti-
mization process startswith theinitial design showninFigure
2la. The optimum layout of the fly-whedl is obtained by
applying topology optimization. Considering a set volume
fraction, the fly-wheel’s normalized compliance is consider-
ably reduced and the structure’s layout, shown in Figure 21b,
is found. Next, the set of key points depicted in Figure 21c
are identified and used for the boundary representation of a
new design with a cubic B-spline interpolation. Shape opti-
mization with adaptive FE is then performed starting from
the initial mesh depicted in Figure 21d. Adopting the total
mass of the fly-wheel as objective function, together with the
maximum principal stress value and a maximum error of the
FE solution as constraints, the final design shown in Figure
2leis obtained.

6 CONCLUDING REMARKS

This chapter has introduced continuous optimization built
around the three-column concept. Depending on the selec-
tion of the design variables, the mathematical formulation of
the problem, the parameterization and the avail abl e optimiza-
tion algorithms, different types of optimization problems
have been illustrated. Finally, a set of examples highlighting
achievements and al so difficulties have been carefully devel-
oped with the aim of illustrating the practical application of
such techniques.
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Optimum topology

Initital design

Design
space
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Figure 21. Fully integrated design optimization of afly-wheel. (a) Initial design; (b) optimum topology; (c) boundary detection; (d) Initial
mesh for shape optimization; (€) Optimum shape w/mesh adaptivity. Reproduced with permission from Sienz et al. (1999) (© Saxe-Coburg

Publications.

The topology optimization method gives a rational basis
for a designer to select the initial domain. Thisis dueto its
ability tofind thelayout for astructure, but with anon-smooth
definition of the boundary curves as drawback. Size and
shape optimization techniquesinstead allow already existing
boundaries to be controlled in more detail. Fully integrated
methods, where topology, size, and shape optimization tech-
nigues are included, are common practice in the aerospace
industry. Accuracy of the discrete solution of the underlying
analysis is essential; error estimates together with adaptive
mesh generation can be used to achieve this.

M ost of the concepts described above can befoundin com-
mercially available computer-aided engineering (CAE) tools
commonly used in the industry, such as ALTAIR HY PER-
WORKS, ANSYS, and NASTRAN. Typicaly, they have
a wide range of tools within one software framework or
workbench to solve large scale optimization problems by
combining performance data management, process automa-
tion, good data exchange facilities with robust, reliable
meshing tools and general purpose, accurate FE solvers for
structures, fluids, thermal, acoustic, €lectromagnetic, and/or
multiphysics problems. Various optimization technologies
for automated, optimal engineering design complement the
CAE toals, using topol ogy, size or shape methods, or acombi-
nation of them, to simultaneously satisfy objectives and meet
constraint targetsfor stiffness, strength, durability, crashwor-
thiness, noise and vibration, mass, cost, manufacturability,
and reliability. These powerful tools for solving engineering
design problemswith increasing complexity are very helpful

for lesser-experienced design engineers, but exploiting their
full potential needs extensive experience so that the results
are always optimal and feasible solutions.
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