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Analysis of transfer procedures in elastoplasticity based
on the error in the constitutive equations: Theory and

numerical illustration
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SUMMARY

The aim of this work is to illustrate a methodology for the assessment of adaptive strategies for
the solution of associative rate-independent plasticity problems solved by employing the incremental
displacement conforming finite element method. This is the first step towards a more rational definition
of transfer operators in terms of the ensuing error. The motivating idea is the observation that change
of data and/or finite element mesh from one time interval to the other can be both related to a
discontinuity jump of the approximate solution across the time instant tn. Thus, reliable a posteriori
estimates will have to depend not only on the time step and finite element mesh size but also on the
value of the jump. A new error estimate based on the error in the constitutive equations is developed
which allows characterization of the discontinuity jump. Copyright � 2004 John Wiley & Sons, Ltd.

KEY WORDS: associative rate-independent plasticity; displacement finite element solution; transfer
operators; error in the constitutive equations

1. INTRODUCTION

Use of adaptive strategies in solid mechanics for the finite element solution of history-dependent
non-linear problems solved by employing incremental methods is of paramount importance. An
adaptive strategy can be defined as a computational procedure which delivers the finite element
solution for the problem at hand to the prescribed accuracy. Key ingredients are: (i) the
availability of an error estimator which accounts for the sources of error associated with the
approximation, (ii) error indicators for the choice of the optimal discretization parameters, and
(iii) a data transfer procedure when the current finite element mesh is different from the one
of the previous time step.

In the finite element analysis of these problems the quality of the simulation is generally
assessed by physical or heuristic arguments based on the experience and judgement of the

∗Correspondence to: D. Perić, School of Engineering, University of Wales Swansea, Singleton Park, SA2 8PP
Swansea, U.K.

†E-mail: d.peric@swansea.ac.uk

Published online 24 May 2004 Received 20 February 2003
Copyright � 2004 John Wiley & Sons, Ltd. Accepted 9 September 2003



1596 A. ORLANDO AND D. PERIĆ

analyst. Frequently such arguments are specific for the problem under consideration [1–4] and
often fail to account for all the discretizations introduced [5–8].

An a posteriori error estimation for the solution of the fully discrete scheme has been given
in [9, 10]. In Reference [9] error estimates are obtained from the dual analysis applied to the
linearized equation that defines the error, whereas in Reference [10] estimates of time and space
discretization error are obtained further to heuristic considerations motivated by the physics of
the phenomenon.

A family of error measures with clear physical meaning and capable to account for effects of
time and space discretization is given by the error in the constitutive equations. The notion, in-
troduced by Ladevèze in 1975 [11] for linear problems, was then extended to history-dependent
materials defined by a functional formalism in Reference [12] and to constitutive models with
internal variables and having an associative flow rule in Reference [13]. For the latter class of
models, the concept of dissipation error was introduced which is related to the residual in the
evolution law produced by time continuous admissible solutions that satisfy the compatibility
relations, the equilibrium equations, the state law and the initial conditions. The dissipation
error was then extended in Reference [14] by removing the state laws from the admissibility
conditions. Applications of this error measure were given for an elastic-damage coupled model
in Reference [14] solved with the nonincremental LATIN method and to the Prandtl–Reuss
plasticity model in Reference [15] solved with the classical incremental finite element method.
In the latter work, in particular, it was shown the capability of the new error measure to
account for effects of time and space discretization.

The aim of this work is to describe a methodology for the assessment of adaptive strate-
gies for associative rate-independent plasticity problems solved by employing the incremental
displacement conforming finite element method. This is the first step towards a more rational
definition of the transfer operator in terms of the ensuing error. The motivating idea is the
observation that change of data and/or finite element mesh from one time interval to the
other can be both related to a discontinuity jump of the approximate solution across the time
instant tn.

When the finite element mesh is changed at time tn, two finite element solutions are consid-
ered for the same load level: the one at t−n , which is associated with the mesh Thn , (henceforth,
called old mesh), and the other at t+n , which is associated with the mesh Thn+1 , (henceforth,
referred to as a new mesh). The solution at t+n is computed by equilibrating the data defined
by the specific transfer procedure [16]. Consequently, in general, a discontinuity jump appears
in the time linear interpolation of the discrete values across the time node tn as a result of the
change of mesh and transfer procedure.

The residual error, which is obtained by substituting the approximation into the equations
that define the initial boundary value problem and representing the forcing in the problem that
defines the global error, has two components: One component is regular, which is present also
with static finite element mesh and depends essentially on the time step and mesh size. The
other component is singular for the presence of the rate quantities �̇p(x, t), �̇(x, t) and the
discontinuity jump in the time interpolant of �p and �. The singular components, therefore,
depend on the value of the discontinuities which, for the way the fully discrete schemes are
formulated, can be arbitrary. Consequently, in principle, they can have an important influence
on the global error.

Since the error depends on the residual, reliable a posteriori estimates of the error of such
approximations will have to depend not only on the time step and finite element mesh size
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but also on the value of the jump, that is, on the singular components of the residual. Such
structure of error estimates have been obtained from a posteriori error analysis of finite element
approximations of parabolic problems [17, 18], degenerate parabolic problems [19] and dynamic
problems in solid mechanics [20].

In this work, attention will be given only to the error estimation procedure itself. After this
introduction, in Section 2 a simple error analysis of a first order ordinary differential equation,
chosen as elementary prototype of the evolution law of the internal variables, shows indeed
the influence on the error of the time discontinuity jump. It also appears that only measures
of error that account for time discretization effects can reflect the low order regularity of
the approximation across the time instant tn when the change of mesh occurs. As a result,
the extended dissipation error introduced in Reference [14] naturally lends itself for this aim.
After describing briefly the reference problem in Section 3, the first part of Section 4 recalls
the extended dissipation error for time continuous admissible solution whereas in the second
part, a new measure of the error in the constitutive equations which accounts for the time
discontinuity jump in the admissible solution is defined in Section 4. The theory is developed
for rate-independent plasticity material models and leads to the definition of an additional
nonnegative term in the extended dissipation error which depends on the jump, in agreement
with the error analysis of Section 2. This term and the behaviour of the error component in
the state law characterize completely the discontinuity jump. This result motivates the use of
the augmented extended dissipation error as basis of a methodology for the assessment of the
global accuracy in time of finite element solutions on evolving meshes. Applications of the
theory are given in Section 5 for the conforming displacement finite element solution of the
Prandtl–Reuss plasticity model solved with incremental procedure. After a critical review of
the transfer procedures, criteria to build admissible solutions that are as close as possible to
the computed finite element solution are proposed. The applicability of the methodology is
finally illustrated in Section 6 on a one dimensional model problem where a detailed study
of the transfer operators introduced in References [3, 21, 22] is carried out, with the numerical
experiments providing confirmation of the theoretical developments.

2. MOTIVATION: THE ERROR ANALYSIS OF A NON-DIFFERENTIABLE
APPROXIMATE SOLUTION OF A 1st ORDER ODE

Consider the scalar initial value problem,∣∣∣∣∣
u̇(t) + a(t)u(t) = f (t) t ∈ [0, T ]
u(0) = u0

(1)

with a(t) � 0. The solution of (1) is given by [18]

u(t) = exp[−A(t)]u0 +
∫ t

0
exp[−(A(t) − A(�))]f (�) d� (2)

where A(t) = ∫ t

0 a(�) d�, so that the following a priori estimate is obtained:

|u(t)| � |u0| +
∫ t

0
|f (�)| d� (3)

for the non-decreasing character of A = A(t) and for being A(t) � 0.
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Let 0 = t1 < · · · < tn < · · · < tN+1 = T be a partition of the time interval [0, T ] of
interest and consider a function U = U(t) to be approximation of the problem (1), which is
differentiable over the intervals [tn, tn+1]. The function U = U(t) may have jump discontinuities
at the time instants tn, thus we let U(t+n ) − U(t−n ) = �n. For n = 1, we assume U(t−1 ) = u0,
thus �1 = U0 − u0. This means that U = U(t) is solution of the following problem:∣∣∣∣∣∣∣∣

For n = 1, . . . , N

U̇(t) + a(t)U(t) = f (t) − R(t) t ∈ [tn, tn+1]
U(t+n ) = U(t−n ) + �n

where R = R(t) is the residual produced by U = U(t) within each time interval [tn, tn+1]
where U = U(t) is differentiable.

The error e(t) = u(t) − U(t) associated with the approximation U = U(t) is, therefore,
solution of the following problem:∣∣∣∣∣∣∣∣

For n = 1, . . . , N

ė(t) + a(t)e(t) = R(t) t ∈ [tn, tn+1]
e(tn) = �n

(4)

Using for each subinterval [tn, tn+1] the result given in (2), we obtain

e(t) =
N∑

n=1
exp[−A(t − tn)]�n�n +

∫ t

0
exp[−(A(t) − A(�))]R(�) d� (5)

where

�n =
{
0 if t � tn

1 if t > tn

The first term on the r.h.s. of Equation (5) gives the propagation at t ( � tn) of the discontinuity
jump �n in the approximate solution U = U(t), whereas the integral term can be interpreted as
the sum of the time-elemental contributions to the total error at the time t . The time-elemental
contributions are obtained by the propagation at time t of the residual error R(�) d� produced
within the time-elemental interval [�, � + d�] at time � � t .

Remark 2.1
Equation (5) shows the influence of the jump discontinuities on the error. Also, note that for
a continuous approximation solution U = U(t), that is, �n = 0, for n = 1, . . . , N , the error
depends only on the residual produced within the time intervals where the approximation is
differentiable.

Applying (3) and the triangular inequality, we obtain the following a priori estimate of the
solution (5):

|e(t)| �
N∑

n=1
|�n|�n +

∫ t

0
|R(�)| d�, ∀t � T (6)
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which shows the accumulation in time of the jump discontinuities and of the residual as
indication of the pointwise error. From (6), it is immediate to obtain also the following global
estimate in time:

sup
t � T

|e(t)| �
N∑

n=1
|�n| +

∫ T

0
|R(�)| d� (7)

If R(t) = 0, ∀t ∈ [tn, tn+1], ∀n, that is, the approximate solution U(t) does satisfy exactly
equation (1) over each time interval [tn, tn+1], the second term on the r.h.s. of Equation (5)
disappears and the error is due to the occurrence of the jumps in U = U(t) across the time
nodes tn. Finally, this means that the error of the approximate solution U = U(t) is related to
the error in the initial data over each time interval.

3. THE IBVP FOR A MODEL WITH INTERNAL VARIABLES

We will assume displacements to be small in the quasi-static evolutive process of the body so
that geometry changes and inertial effects may be neglected.

3.1. Equilibrium equation

Denote with S the linear space of the symmetric second order stress tensors. The statically
admissible stress fields, � = �(x, t) ∈ S, are such that the weak form of the equilibrium, given
by the virtual work, is satisfied, that is∫

�
�(x, t) : ∇�(x) d�︸ ︷︷ ︸

〈�,∇�〉

=
∫

�
b(x, t) · �(x) d�︸ ︷︷ ︸

〈b,�〉

+
∫

��t

t(x, t) · �(x) ds︸ ︷︷ ︸
〈t,�〉��t

∀� ∈ V0,

∀t ∈ I = [0, T ]
(8)

where b = b(x, t) and t = t(x, t) are, respectively, the body force and surface traction fields
and V0 is the linear space of the virtual displacements which vanish on ��d , whereas I is
the time interval of interest [23].

3.2. Compatibility equations

A displacement field u = u(x, t) is kinematically admissible if it is time continuous, at least
once differentiable in space and meets the boundary conditions on ��d . We refer to V as the
space of the kinematically admissible displacements.

Let E be the linear space of the symmetric second order strain tensors. The kinematically
admissible strain fields, � = �(x, t) ∈ E, are continuous fields which are obtained from the
kinematically admissible displacement fields u = u(x, t) ∈ V as follows

� = 1
2 (∇u + ∇uT)

def= ∇su (9)

3.3. Constitutive equations

We will focus on constitutive models of rate independent plasticity in isothermal conditions
belonging to the class of the so-called standard generalised materials as introduced in Reference
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[24]. By exploiting the convex structure of these models, emphasis will be placed especially
on scalar equivalent formulations of the tensorial constitutive equations.

A thermodynamically consistent model is obtained by specifying the state variables along with
the functional form of the free Helmholtz energy and the complementary laws which describe
the time evolution of the internal variables in respect of the Clausius-Duhem inequality. For
isothermal processes, the aforementioned inequality is given by

−�̇ + � : �̇ � 0 (10)

where � is the free Helmholtz energy per unit volume defined in terms of the state variables
which describe the model, and � : �̇ is the total external power.

3.3.1. State variables. We assume (i) temperature to be constant with time and uniform in
space so that it will not be considered hereafter; (ii) that the total strain can be uniquely
decomposed additively into its elastic and plastic part, that is,

� = �e + �p (11)

and finally (iii) that the local state of the material is described by means of additional internal
variables � which characterize the internal changes of the material.

3.3.2. Equations of state. The free Helmholtz energy � is taken as a sum of two proper strictly
convex and lower semicontinuous functions [25, 26] of each of its arguments: �e(�

e) which is
the stored energy due to elastic strain and �p(�) which is the stored energy due to plastic and
internal parameters related to hardening effects [27]

�(�e, �) = �e(�
e) + �p(�)

By expanding the Clausius-Duhem inequality which is required to hold for any admissible
thermodynamic process (�, �p, �) [28], we obtain the state equations

� = ��e

��e
(�e) and A = ��p

��
(�) (12)

and the associated intrinsic mechanical dissipation

� : �̇p − A : �̇ � 0 (13)

where the force-type variable A, defined by the hardening law (12)2 is termed the thermody-
namic force conjugate to � [27].

For our subsequent developments, it is useful to consider the following equivalent formulation
of the state equations (12) [29, 30]

sl
e �2x,t (�; �e)

def= �e(�
e) + �∗

e(�) − � : �e = 0 ⇔ � − ��e

��e
(�e) = 0

sl
p �2x,t (A; �)

def= �p(�) + �∗
p(A) − A : � = 0 ⇔ A − ��p

��
(�) = 0

(14)
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where �∗
e(�) and �∗

p(A) are the conjugate functions or Legendre–Fenchel transforms [25, 26]
of �e(�

e) and �p(�), respectively. These are defined as

�∗
e : � ∈ S → �∗

e(�) = sup
�e∈E

{� : �e − �e(�
e)} ∈ R ∪ {+∞}

�∗
p : A ∈ A → �∗

p(A) = sup
�∈�

{A : � − �p(�)} ∈ R ∪ {+∞} (15)

with � : � denoting the duality pairing of the two spaces S and E, whereas A : � is the
duality pairing of the space � of the strain-type internal variables � and the space A of the
thermodynamic forces A.

Upon the definition of the Legendre–Frenchel transforms, it follows that for any pair (�, �e) ∈
� = S × E and (�,A) ∈ � × A,

�∗
e(�) + �e(�

e) − � : �e � 0

�∗
p(A) + �p(�) − A : � � 0

(16)

where the respective equality applies if and only if (�, �e) is the solution of (12)1 and (A, �)

is the solution of (12)2, respectively.

3.3.3. Complementary equations. Associative plasticity. The complementary or evolution laws
characterize the history of the observable variables in terms of the internal variables and they
are restricted to meet the intrinsic mechanical inequality (13) [31]. A simple way to ensure
a priori the thermodynamic consistency of the model is given by the class of the standard
generalised materials. In these models, one assumes the existence of a potential of dissipation
�(�̇p, −�̇) in the space �̇ = Ė × �̇ of rate of dissipative variables, which is positive, convex
in its variables, lower semicontinuous and such that �(0, 0) = 0. The complementary laws are
then given by

(�,A) ∈ ��(�̇p, −�̇) (17)

where the symbol � denotes the subdifferential operator [25, 26].
For the rate-independent plasticity models, hereafter considered, the dissipation potential

�(�̇p, −�̇) may be characterized as the support function of a closed convex domain E ⊆ �,
containing the origin (�,A) = (0, 0), that is,

�(�̇p, −�̇) = sup
(�,A)∈E

{� : �̇p − A : �̇}, ∀(�̇p, −�̇) ∈ �̇ (18)

with E, called the elastic domain, defined by

E = {(�,A) ∈ � | � : �̇p − A : �̇ ��(�̇p, −�̇), ∀(�̇p, −�̇) ∈ �̇} (19)

and representing the locus of the admissible generalized stresses.
In place of Equation (17), it is usually more convenient to refer to the inverse relations

obtained by introducing the Legendre–Fenchel transform of � defined as

�∗ : (�,A) ∈ S × A → �∗(�,A) = sup
(�̇p,−�̇)∈�̇

{� : �̇p − A : �̇ − �(�̇p, −�̇)}
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Since �(�̇p, −�̇) is the support function of E, the dual dissipation potential �∗(�,A) is then
the indicator function of E defined as

�∗(�,A) = IE
def=

{
0 if (�,A) ∈ E

+∞ if (�,A) �∈ E

The evolution equations for the internal variables can therefore be expressed also as

(�̇p, −�̇) ∈ ��∗(�,A) (20)

For our subsequent developments, likewise for the state equations, the evolution laws are recast
into an equivalent formulation [23, 29] which exploits the convexity of the model,

d�2x,t (�,A; �̇p, �̇)
def= �(�̇p, −�̇) + �∗(�,A) − � : �̇p

+A : �̇ = 0 ⇔ (�̇p, −�̇) ∈ ��∗(�,A) (21)

From the properties of the Legendre–Fenchel transform, it follows that for any state
(�,A; �̇p, −�̇) ∈ � × �̇

�(�̇p, −�̇) + �∗(�,A) − � : �̇p + A : �̇ � 0 (22)

where the equality holds if and only if (�,A; �̇p, �̇) is a solution of (20).
Finally, for the quasi-static process where inertial effects are neglected, the initial conditions

for the variables appearing in rate form have to be given to complete the initial boundary value
problem. These are given by

�p(x, t = 0) = �p0(x) and �(x, t = 0) = �0(x)

The initial boundary value problem for this class of models is summarized in Box 1.

3.4. The Prandtl–Reuss plasticity model

The Prandtl–Reuss plasticity model is a standard model obtained by using the Von Mises yield
criterion and an isotropic hardening law. The internal variables are the plastic strain tensor �p

and the accumulated plastic strain p, while the conjugate variables are the stress tensor � and
the thermodynamic force R, respectively.

3.4.1. State laws. The free Helmholtz energy is chosen as

�(�e, p) = �e(�
e) + �p(p) = 1

2
C�e : �e +

∫ p

0
g(q) dq

with C being the Hooke elasticity tensor and g(p) is a positive and increasing scalar function
of the accumulated plastic strain p with g(p = 0) = 0. Also, it results

�∗(�, R) = �∗
e(�) + �∗

p(R) = 1

2
C−1

� : � + Rg−1(R) − �p(g
−1(R))
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Box 1. IBVP for standard generalized models with internal variables.

Data b(x, t) on �, t(x, t) on ��t and u0(x, t) on ��d

Find �(x, t),A(x, t); u(x, t), �(x, t), �p(x, t), �(x, t) such that the following conditions are
satisfied:

(a)

∣∣∣∣∣∣∣∣∣∣∣

Kinematic Compatibility:
Continuity of the Displacement Field, u(x, t).
Time continuity of the Total Strain, �(x, t) = ∇su(x, t).
Time continuity of the Plastic Strain, �p(x, t).
Time continuity of the Internal Variables, �(x, t).
Displacement Boundary Conditions.

(b)

∣∣∣∣∣∣∣
Equilibrium:

〈�(x, t), ∇�(x)〉 = 〈b(x, t), �(x)〉 + 〈t(x, t), �(x)〉��t

∀� ∈ V0, ∀t ∈ [0, T ].

The constitutive initial value problem

(c)

∣∣∣∣∣∣∣
Additivity of the Strain Tensor:

�(x, t) = �e(x, t) + �p(x, t),

∀x ∈ �, ∀t ∈ [0, T ].

(d)

∣∣∣∣∣∣∣∣∣∣∣∣

State Laws:

�e(�
e(x, t)) + �∗

e(�(x, t)) − �(x, t) : �e(x, t) = 0 ⇔ � − ��e

��e
(�e) = 0,

�p(�(x, t)) + �∗
p(A(x, t)) − A(x, t) : �(x, t) = 0 ⇔ A − ��p

��
(�) = 0,

∀x ∈ �, ∀t ∈ [0, T ].

(e)

∣∣∣∣∣∣∣∣∣

Evolution Laws:
�(�̇p(x, t), −�̇(x, t)) + �∗(�(x, t),A(x, t))

−�(x, t) : �̇p(x, t) + A(x, t) : �̇(x, t) = 0 ⇔ (�̇p, −�̇) ∈ ��∗(�,A),

∀x ∈ �, ∀t ∈ [0, T ].

(f)

∣∣∣∣∣∣∣
Initial Conditions:

�p(x, t = 0) = 0,

�(x, t = 0) = 0,
∀x ∈ �

therefore, the state laws can be formulated as follows

�e(�
e) + �∗

e(�) − � : �e = 0 and �p(p) + �∗
p(R) − Rp = 0

where �∗
e and �∗

p denote the Legendre transforms of �e and �p, respectively.
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3.4.2. Evolution laws. Given the closed convex elastic domain,

E = {(�, R)
∣∣ ‖�D‖ − (R + R0) � 0, R � 0}

with R0 the initial yield stress, the dissipation potential is [23]
�(�̇p, −ṗ) = sup

(�,R)∈E

{� : �̇p − Rṗ} = R0‖�̇p‖ + IC

with IC being the indicator function of the following closed convex set:

C = {(�̇p, −ṗ)
∣∣ ‖�̇p‖ − ṗ � 0 and Tr[�̇p] = 0 }

The dual dissipation potential �∗(�, R) is the indicator function of E, i.e.

�∗(�, R) = IE

The evolution laws can, therefore, be formulated as follows:

�∗(�, R) + �(�̇p, −ṗ) − � : �̇p + Rṗ = 0

4. ADMISSIBLE SOLUTION AND MEASURE OF THE ERROR

We assume that the problem of computing the response of the model described in the previous
section and summarized in Box 1 is posed by the set of functions, (�(x, t),A(x, t); �(x, t),
�p(x, t), �(x, t)), which gives a finite value to the global energy∫

�

sl
e �2x, t (�; �e) d� +

∫
�

sl
p �2x, t (A; �) d� +

∫
�

∫ T

0

d�2x, t (�,A; �̇p, �̇) dt d� < ∞

Also, we assume that the formulation is such that the problem has a solution which is unique.
In this class of functions, we distinguish a subset given by those functions which satisfy

only some properties and equations given in Box 1. Any element of this set is referred to,
in general, as an admissible solution. It is, therefore, clear that an admissible solution is the
exact solution if and only if also the remaining equations are satisfied. Given the dissipative
character of the problem under consideration, a direct measure of the residual related to these
remaining equations can be used as an indication of the error associated with the problem [32].

4.1. The extended dissipation error

The extended dissipation error introduced in Reference [14] is an error in the formulation
with internal variables of the constitutive equations. Only the compatibility and equilibrium
equations are assumed for the definition of the admissibility conditions. More precisely, the
field (�ad(x, t),Aad(x, t); uad(x, t), �ad(x, t), �

p
ad(x, t), �ad(x, t)) is an admissible solution with

respect to the computation of the extended dissipation error if conditions (a), (b), (c) and (f)
given in Box 1 are met.
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4.1.1. Definition of error. The equations that are not satisfied by the above admissible solution
are the state laws and the evolution laws. Therefore, the quality of the admissible solution
depends upon the residual produced therein. A natural way to measure this residual is obtained
by resorting to the equivalent scalar formulations of the state and evolution laws given by (14)
and (21), respectively. Furthermore, given the nature of the state laws that relate the current
value of the kinematic variables to the corresponding static one, a global measure of the error
is obtained by assuming an L∞ accumulation in time of the current value of the error in the
state laws. Therefore, it is quite natural to assume the following definition of error:

e2ext(T ) = sup
t � T




�2(t)︷ ︸︸ ︷
2

∫
�

sl �2x, t (�ad,Aad; �ead, �ad) d�︸ ︷︷ ︸
�2sl(t)

+ 2
∫

�

∫ t

0

d�2x,�(�ad,Aad; �̇pad, �̇ad) d� d�︸ ︷︷ ︸
�2d(t)



(23)

where, in general, the quantity

sl�2x, t (�ad,Aad; �ead, �ad) = �∗(�ad(x, t),Aad(x, t)) + �(�ead(x, t), �ad(x, t))

− �ad(x, t): �ead(x, t) − Aad(x, t): �ad(x, t)

is the residual in the state laws and the term

d�2x, t (�ad,Aad; �̇pad, �̇ad) = �∗(�ad(x, t),Aad(x, t)) + �(�̇pad(x, t), −�̇ad(x, t))

− �ad(x, t): �̇pad(x, t) + Aad(x, t): �̇ad(x, t)

describes the residual produced in the evolution laws.
If we denote by

sad(x, t) = (�ad(x, t),Aad(x, t); �ad(x, t), �
p
ad(x, t), �ad(x, t))

and

sex(x, t) = (�ex(x, t),Aex(x, t); �ex(x, t), �pex(x, t), �ex(x, t))

an admissible and the exact solution of the initial boundary value problem, respectively, Def-
inition (23) can be assumed as a global measure of the error of the (kinematic) admissible
solution in the following sense:

Proposition 1
Given an admissible solution sad = sad(x, t) with respect to the computation of the extended
dissipation error, it follows:

e2ext(T ) � 0

e2ext(T ) = 0 ⇐⇒ sad(x, t) = sex(x, t) ∀x ∈ �, ∀t � T
(24)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1595–1631



1606 A. ORLANDO AND D. PERIĆ

Proof
Statement (24)1 follows easily from (16) and (22), whereas (24)2 derives from the non-negativity
and non-decreasing nature of e2ext(t) and the characterizations (14) and (21).

4.2. The error in the evolution law for admissible solution with jump at tn

In this section, we want to show how the error component in the evolution law can be extended
to the case in which the hypothesis of time continuity is removed so that admissible solutions
may include a discontinuity jump at a given time instant tn, i.e. sad(x, t−n ) �= sad(x, t+n ).

In case of the rate independent plasticity, the solution of the initial boundary value problem
which governs the evolution of the continuum depends only on the sequence of load levels
whereas time has just the function of ordering this sequence. In agreement with this behaviour,
it can be assumed that the value of the admissible solution at t+n is also the value at tn+�t and
is independent on �t . In this way, a fictitious time continuous process over the time interval
[tn, tn + �t] along which the discontinuity is assumed to be taking place can be defined, and
one can analyse the error in the evolution law as the time step �t shrinks to zero.

Under constant load level equal to b(x, tn), we consider a fundamental family [33] of fictitious
time continuous admissible solutions (•)ad, �t (x, �) over [tn, tn + �t] and parameterized by �t

having as limit the given admissible solution, that is, we consider ∀x∈ �,

lim
�t→0+

�ad,�t (x, �) = �ad(x, �); lim
�t→0+

Aad,�t (x, �) = Aad(x, �)

lim
�t→0+

�ad,�t (x, �) = �ad(x, �); lim
�t→0+

�pad,�t
(x, �) = �pad(x, �); lim

�t→0+
�ad,�t (x, �) = �ad(x, �)

where (•)ad(x, �) denote the functions with the time discontinuity jump.
With regard to each member of this family, the error in the evolution law can now be

computed. Thus, if ∀x ∈ � the following limit exists and is finite:

��2d(x, tn) ≡ lim
�t→0+

∫ tn+�t

tn

d,�t�2x,�(�ad,�t ,Aad,�t ; �̇pad,�t
, −�̇ad,�t ) d� (25)

where

d,�t�2x,� = �∗(�ad,�t (x, �),Aad,�t (x, �)) + �(�̇pad,�t
(x, �), −�̇ad,�t (x, �))

− �ad,�t (x, �): �̇pad,�t
(x, �) + Aad,�t (x, �): �̇ad,�t (x, �)

it seems natural to assume the limit to be the error in the evolution law at the point x in
presence of discontinuity.

Remark 4.1
In order to have a finite value for the error, the fictitious time continuous admissible solutions
are required to belong to the effective domain of the functional d,�t�2x,�. Furthermore, the

additional term, ��2d(x, tn), is always non-negative as a result of the limit of non-negative
functions due to the Legendre–Fenchel inequality. Thus, the jump in the admissible solution
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will always produce a non-negative contribution to the error component associated with the
dissipation.

4.2.1. Augmented extended dissipation error. The error in the constitutive equations at the time
T of the admissible solution with jump across the time tn ∈ ]0, T [ is given by [32]

�e2ext(T ) = sup
t � T



2

∫
�

sl�2x, t (�ad,Aad; �ead, �ad) d�︸ ︷︷ ︸
�2sl(t)

+ 2
∫

�

∫ t

0

d�2x,�(�ad,Aad; �̇pad, �̇ad) d� d� + 2
∫

�

��2d(x, tn) d�︸ ︷︷ ︸
�2d (t)




(26)

where ��2d(x, tn) is defined by (25).

Remark 4.2
Starting from a different point of view, the additional term due to the discontinuity jump
appears also in the error analysis carried out in Reference [9]. The authors refer to a dual
variational formulation of plasticity and propose a splitting of the error which distinguishes the
component due (i) to time discretization, (ii) to the space discretization and (iii) to the effect,
through the stability of the non-linear incremental boundary value problem, of the error for
using different data in posing this problem.

For the Prandtl–Reuss plasticity model, ��2d(x, tn) is given by

��2d(x, tn) = R0‖�pad(x, t+n ) − �pad(x, t
−
n )‖ − �ad(x, t+n ) + �ad(x, t−n )

2
: (�pad(x, t

+
n ) − �pad(x, t

−
n ))

+ Rad(x, t+n ) + Rad(x, t−n )

2
(pad(x, t+n ) − pad(x, t−n )), ∀x ∈ � (27)

The expression of ��2d(x, tn) is obtained by assuming fictitious continuous admissible solutions
(•)ad,�t (x, �) as linear interpolations of the values at t−n and t+n over [tn, tn+�t] and computing
the limit (25) [32].

The use of (27) is motivated by the following Proposition 2 which characterizes the discon-
tinuity. The condition is next presented for the Prandtl–Reuss model with linear hardening and
it is given in a more general format which applies to admissible solutions with jump across
time instant tn in the case of rate-independent plasticity.

Denote by

sad(x, tn) = (�ad(x, tn), Rad(x, tn); �ad(x, tn), �
p
ad(x, tn), pad(x, tn))
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and

sad(x, tn + �t) = (�ad(x, tn + �t), Rad(x, tn + �t);
�ad(x, tn + �t), �pad(x, tn + �t), pad(x, tn + �t))

any admissible solution at tn and tn + �t , respectively, corresponding to the same load level
and with sad(t) the admissible solution obtained as time linear interpolation over [tn, tn + �t]
of sad(tn) and sad(tn + �t). We have then the following result [32]:
Proposition 2
Given the admissible solutions sad(tn) and sad(tn + �t), corresponding to the same load level
and meeting the finite value error requirements

∀x ∈ �∣∣∣∣∣ (�ad(x, tn), Rad(x, tn))

(�ad(x, tn + �t), Rad(x, tn + �t))
∈ E

pad(x, tn + �t) − pad(x, tn) � ‖�pad(x, tn + �t) − �pad(x, tn)‖
Tr(�pad(x, tn + �t) − �pad(x, tn)) = 0

and not necessarily the state equations at tn and tn + �t , respectively, it follows ∀x ∈ �,

IF




sl�2x, tn = sl�2x, tn+�t = sl�2x, t

∀t ∈ [tn, tn + �t].
��2x,d (x, tn) = 0

⇒




�ad(x, tn) = �ad(x, tn + �t)

Rad(x, tn) = Rad(x, tn + �t)

�ad(x, tn) = �ad(x, tn + �t)

�pad(x, tn) = �pad(x, tn + �t)

pad(x, tn) = pad(x, tn + �t)

Proof
The proof is here only sketched. For more details we refer to Reference [32]. Time derivative
of sl�2x, t delivers

d

dt
sl�2x, t = 0 ⇒

∣∣∣∣∣ ��ad = C��ead

�Rad = H�pad

where we have let �(•) = (•)(x + �t) − (•)(x, tn).
From the equilibrium at tn and tn + �t one has∫

�
��ad: ��ad d� = 0

The requirements for a finite value of the error along with the condition

��2d(x, tn) = R0‖�pad(x, tn + �t) − �pad(x, tn)‖
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− �ad(x, tn + �t) + �ad(x, tn)
2

: (�pad(x, tn + �t) − �pad(x, tn))

+ Rad(x, tn + �t) + Rad(x, tn)
2

(pad(x, tn + �t) − pad(x, tn)) = 0

give

��ad: ��pad = �Rad�pad

Therefore, it is∫
�

��ad: ��ead d� +
∫

�
��ad: ��pad d� = 0 ⇔

∫
�
C��ead: ��ead d� +

∫
�
H2�pad d� = 0

⇔

∣∣∣∣∣∣∣∣∣
��ead = 0 ⇒ ��ad = 0

�pad = 0 ⇒ �Rad = 0

(a)⇒ ��pad = 0

where implication (a) follows from the conditions imposed on the admissible solution to deliver
a finite value of the error.

4.3. Definition of error in solution

Let

skinad (x, t) = (uad(x, t), �
p
ad(x, t), �ad(x, t), pad(x, t)) (28)

denote a kinematically admissible solution with u meeting the compatibility conditions, and
�pad(x, t), �ad(x, t), pad(x, t) meeting the initial conditions. The kinematically admissible solution
may also present discontinuity jump across time instants tn. We assume the error in the
constitutive equations produced by

sex,ad = (�ex,Xex, Rex;uad, �pad, �ad, pad)

as global measure of the exact error in solution associated with skinad . This is defined as

e2ex(T ) = sup
t � T

�2ex(t) (29)

where

�2ex(t) = 2
∫

�

sl�2x, t (�ex,Xex, Rex; �pad, �ad, pad) d�
∣∣
t

+ 2
∫

�

∫ t

0

d�2x,�(�ex,Xex, Rex; �̇pad, �̇ad, ṗad) d� d�
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This definition of error is meaningful, in the sense that it can easily be shown [32] that
e2ex(T ) = 0 if and only if sex,ad is time continuous and sex,ad(x, t) = sex(x, t), ∀x ∈ �, ∀t � T .
Also, by employing the extension of the Prager–Synge theorem given in Reference [23], the
following bound can be proved [32]

eex � edis

where edis is the dissipation error [13], that is, the error in the constitutive equations produced
by an admissible solution that meets also the state laws.

5. FINITE ELEMENT SOLUTION WITH CHANGE OF MESH AT tn.
TRANSFER PROCEDURES

We consider next the conforming displacement finite element solution of the nonlinear incre-
mental boundary value problem obtained by the backward Euler time integration scheme.

Let 0 = t1 < · · · < tn < · · · < tN+1 = T be a partition of the time interval of interest [0, T ]
and set kn = tn+1 − tn. Denote with �hn+1

l ∈ Thn+1 a generic element of the triangulation

Thn+1 and with xhn+1
l,j ∈ �hn+1

l the j th Gauss point of the element �hn+1
l and ngp its number.

The fully discrete problem relative to the time interval [tn, tn+1], formulated with generic
data �̃pn(x), �̃n(x), reads as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Given: ∀�hn+1
l ∈ Thn+1 and for j = 1, . . . , ngp,

External Loading bn+1(x
hn+1
i, j )

State of the system at tn

∣∣∣∣∣∣
�̃pn(x

hn+1
l, j )

�̃n(x
hn+1
l, j )

Find: uhn+1
n+1 (x) ∈ Vhn+1

Such that:

∑
�

hn+1
l ∈Thn+1

ngp∑
j=1

jl, jwl, j

{
hn+1�n+1(x

hn+1
l, j ) : ∇�hn+1(xhn+1

l, j )

−bn+1(x
hn+1
l, j ) : �hn+1(xhn+1

l, j )
}

= 0, ∀�hn+1 ∈ V
hn+1
0

(30)

where the stress tensor hn+1�n+1(x
hn+1
l, j ) is obtained by solving at xhn+1

l, j the constitutive incremen-

tal problem with data �̃pn(x
hn+1
l, j ), �̃n(x

hn+1
l, j ) and prescribed strain �hn+1

n+1 (xhn+1
l, j ) = ∇su

hn+1
n+1 (xhn+1

l, j ).
The constitutive incremental problem (CInP) is obtained by applying the backward Euler time
discretization scheme to the solution of the initial value constitutive problem described in Box
1. In Equation (30) wl,j and jl, j denote the weight and the value of the Jacobian determinant
at the Gauss point xl, j [34]. For the sake of notation, the work of the traction forces in (30)
has been dropped.

The choice of the quantities in rate form as secondary variables and the use of backward
Euler as time discrete scheme poses, however, the question on how to define the data �̃pn(x

hn+1
l, j )

and �̃n(x
hn+1
l, j ) for problem (30) in the case the finite element mesh adopted for its discretization
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is different from the one used in the previous time interval. In this case, inasmuch as the mesh
changes across the time node tn, the Gauss points change as well and it is no more possible to
define the history of the secondary variables at these points if they have not been considered
from the initial time t = 0.

The procedures currently in use for the definition of these data, in general, try to compute the
value of the unknowns fields �̃pn(x

hn+1
l, j ), �̃n(x

hn+1
l, j ) at the new integration points, xhn+1

l, j ∈ �hn+1
l

with �hn+1
l ∈ Thn+1 , in terms of the values hn�pn(x

hn

e, i ),
hn�(xhn

e, i ), solution relative to the previous

time interval [tn−1, tn] at the old integration points, xhn

e, i ∈ �hn
e with �hn

e ∈ Thn .
These procedures are usually known by the name of Transfer of Data. Though it appears

difficult trying to draw a classification, the fundamental approaches and ideas can be referred
to the following procedures [32]:

• Variationally consistent transfer.
• Weak enforcement continuity transfer.
• Smoothing transfer.

These transfer processes are in the following presented with reference to the specific problem
at hand. This means that only transfer of �p and � will be analysed. It is also worth noting that
all the following operations share the same underlying idea of defining first a field for the state
variables which depends on the old mesh with its relative distribution of the elemental Gauss
points. This field is then transformed, according to the specific procedure, into a new field on
the new mesh which allows the sampling at the new Gauss points. The resulting function is
denoted by (•̃)n. The latter is equilibrated with respect to the new mesh by delivering hn+1(•)n.
The difference between the two fields, hn(•)n − hn+1(•)n, defines the discontinuity.

5.1. Variationally consistent transfer

This class of transfers has been analysed by Ortiz and coworkers in References [3, 35, 36]. A
variationally consistent transfer is a remapping procedure where the initial data is obtained from
sampling at new Gauss points the solution of the variational formulation of the incremental
boundary value problem for the time step [tn−1, tn]. For this to happen, the equations that
define the secondary variables, and appearing as data of the problem, must be expressed in a
variational form and consequently an interpolation for those variables must be prescribed. It
is this variational formulation that provides the data for the fully discrete problem in case of
change of mesh. This observation, therefore, suggests enforcement of the CInNP in a weak
form and not in a pointwise manner, as it is implied by the standard displacement formulation.
However, inasmuch as we are interested to perform transfer of the variables obtained from the
displacement formulation, we must ensure that the solution obtained from this more general
variational formulation conforms to the one obtained from the displacement formulation.

This can easily be achieved, as it is asserted in Reference [3], by an appropriate choice
of the interpolation functions for the secondary variables and assuming the same element-base
quadrature scheme. Since the fields �(x), �p(x), �(x) are not involved in spatial derivative in
the general variational formulation, unlike the displacement field u(x), the respective finite
element interpolation functions are not required to be continuous over the element and across
the element boundaries [3] but only to meet general regularity properties. This allows the
variational equations of the constitutive equations to be imposed element by element.
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Figure 1. Possible choices for the interpolation functions of the internal variables which comply
with the requirements of Equation (32).

Furthermore, if we assume the values of the field at the quadrature points as degrees
of freedom for the element interpolant of the state variable, then the Galerkin finite element
approximation becomes equivalent to the set of equations that enforce the constitutive equations
at each Gauss point of the element. This equivalence of the displacement formulation based on
element quadrature with underlying more general variational formulations represents an example
of limitation principle introduced by Reference [37] for mixed formulations.

It can easily be shown [32] that the displacement formulation of the incremental boundary
value problem for the time step [tn−1, tn] can be obtained from an underlying more general
variational formulation of the same incremental boundary value problem. This formulation
presents also �p and � as independent variables with the following interpolation assumptions
holding over each element for their components (�p)a,b and (�p)c,d , respectively∣∣∣∣∣∣∣∣

(e�p,hn
n )a,b(x) =

ngp∑
i=1

e, iN
hn

(�p)a, b
(x)(e, i �̄p

hn

n )a,b

(e�hn
n )c,d(x) =

ngp∑
i=1

e, iN
hn

(�)c, d
(x)(e, i �̄hn

n )c,d

(31)

with the elemental shape functions being piecewise continuous and meeting the following
requirements: ∣∣∣∣∣∣

e,iN
hn

(�p)a,b
(xhn

e,k) = 	i,k

e,iN
hn

(�)a,b
(xhn

e,k) = 	i,k

(32)

In Equation (32) 	i,k is the Kronecker symbol whereas in Equation (31) the coefficients

(e,i (•̄)
hn+1
n+1 )a,b identify with the value of the component of the respective field at the Gauss

points xhn

e,i . The latter results from the displacement finite element solution at tn.

Figure 1 depicts some possible choices for e,iN
hn


pab

, for example, where 
pab denotes a com-

ponent of the second order tensor �p.
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Figure 2. Smoothing transfer: (a) extrapolation of Gauss points values to the nodes of old mesh;
(b) averaging at the nodes of old mesh; (c) finite element interpolation on old mesh; (d) nodal

interpolation onto new mesh; and (e) sampling at new Gauss points.

Finally, the state of the system at t+n , that is, �̃pn(x
hn+1
l,j ) and �̃n(x

hn+1
l,j ), is obtained by sampling

the fields (31) at the new Gauss points x
hn+1
l,j ∈ �hn+1

l .

5.2. Weak enforcement continuity transfer

This transfer procedure is obtained from an approximation a la Galerkin of the variational
equation which imposes in the weak form the continuity across the time node tn of the
variables which appear as data of the InBVP.

Let us assume, in the following, as general regularity property that (•̃)n ∈ (L2(�))ndim and
also that (•)n ∈ (L2(�))ndim , with ndim equal to the number of components of the respective
tensor field with respect to a given basis. The field (•̃)n is the data for the InBVP whereas
(•)n is relative to the solution at the previous time interval.

The following condition

〈(•̃)n − (•)n, �〉 = 0, ∀� ∈ (L2(�))ndim (33)

enforces, in the weak form, the continuity of the field (•)n across the time node tn with 〈•, •〉
being an inner product in the space (L2(�))ndim .

In Reference [22], condition (33) is enforced in a Galerkin sense by replacing the infinite
dimensional space (L2(�))ndim with finite dimensional spaces. These are defined by piecewise
constant functions representing the distribution assumption for the variables �pn and �pn and
corresponding to the two triangulations Thn , and Thn+1 , respectively.

5.3. Smoothing transfer

This procedure represents perhaps the most widely used remapping algorithm in solid mechanics
applications for its relatively simple implementation. Details on the transfer operation can be
found in References [21, 38]. The main steps are summarized in Figure 2. The values of the
state variables (•) at the old Gauss points, (•)(xhn

e,i ), are first transferred to the nodes of the old

mesh, e,i (•)(xhn

N ), possibly also with some weighting. A weighted average is then carried out at

each node, (•)(xhn

N ), and a smooth field, (•)(xhn), is consequently defined by interpolation of
the nodal values by means of the basis functions of the finite element space, Vhn , associated
with the old mesh. The nodal interpolant of this field with respect to the new finite element

space, (•)(xhn+1) = IVhn+1
(•)(xhn), is constructed and the resulting field is sampled at the

new Gauss points delivering therein the transferred values of the state variables, (•)(xhn+1
l,j ).

Some of the above steps can be by-passed and each of them can be executed in different
ways, delivering a fairly large spectrum of transfer procedures.
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5.4. Augmented extended dissipation error

The finite element solution obtained by the displacement formulation described in the previous
section, is not in general an admissible solution. The finite element stresses do not satisfy the
equilibrium equations in a pointwise manner.

In order to apply the theory of the error in the constitutive equations, given the finite element
solution, an admissible solution that is as close as possible to the given finite element solution
needs to be defined so that it can mirror all the approximations affecting the finite element
solution [30].

Furthermore, consistently with an assumed linear variation of the external load over each
time interval, and the convexity of the equilibrium and compatibility conditions, the admissible
solution is taken to vary linearly over [tn, tn+1]. Therefore for its complete definition we need
to solve the following problem:

Given: the admissible solution at tn,

the finite element solution at tn+1,

Find: a corresponding admissible solution at tn+1.

Next, we present first the construction in the case of constant finite element mesh. The case
of change of mesh will then result as a special case of this procedure.

5.4.1. Construction of an admissible solution. In the definition of an admissible solution for
the computation of the extended dissipation error, the statically admissible variables are not
constrained to their conjugate variables by means of the state laws. This allows more informa-
tion from the finite element solution to be included in building the corresponding admissible
solution and strengthen the link between the two solutions. For instance, in the case of the
J2-plasticity model and in the case of finite element solution which delivers plastic strains
meeting the incompressibility condition, the computed plastic strain field can be assumed, in
some circumstances which will be clarified next, as part of the admissible solution. In particular,
the plastic strain, known only at the Gauss points xh

e,i of the element used for the numerical

integration of the constitutive equations, can be extended over the element to a field h�pn+1(x)
which continues to meet the incompressibility condition. This can be realized, for example, by
assuming each element partitioned by the Voronoi cells associated with each Gauss point and
assuming a constant distribution of the plastic strain over the cell equal to the value of the
strain at the respective Gauss point, cf. Figure 3.

Likewise, conforming finite element displacements can be used as part of the admissible
solution and do not need to be modified, in contrast to the definition of the admissible solution
used in computation of the dissipation error [39].

A key feature of the analysis and implementation of the error in the constitutive equations,
however, is the definition of an equilibrated stress field �ad(x, tn+1) linked to the finite element
solution h�n+1(xh

e,i ). In the sequel we refer to the techniques initiated by Reference [11]
where the so called prolongation condition depending in general on the regularity of the
mesh establishes the aforementioned link [30]. In particular, hereafter, we apply the strong
prolongation condition as introduced and analysed in References [11, 30, 40]. This condition
distinguishes the statically admissible stress fields �ad(x, tn+1) which satisfy the following
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Figure 3. Partition of a triangular element with Voronoi cells relative to its Gauss points along with
respective assumed distribution for the internal variables.

equation for every shape function Ni (x) and for all the elements �e,∫
�e

(
�ad(x, tn+1) − h�n+1(x)

)
: ∇Ni (x) d� = 0 (34)

The only unknowns left apart and necessary to determine a complete admissible solution
are, therefore,

�pad(x, tn+1), pad(x, tn+1), �ad(x, tn+1)

Rad(x, tn+1),Xad(x, tn+1)

For their computation, the general method of minimization of the error introduced in Reference
[14] can be adopted. The minimization can he carried out at each point of the domain since
there are no spatial derivative involved in the constitutive equations, in particular it can be
done at the Gauss points used to compute numerically the space integrals that define the error
[30]. These quadrature points do not have to be confused with those used for the numerical
integration of the constitutive equations, which in turn are the one used to compute numerically
the integral that appear in the internal virtual power.

However, in general, it may be much more convenient to resort to the simpler criterion
given in Reference [39] which resembles the integration of the evolution law for the consti-
tutive model which is used. Next, we detail the definition of the admissible state variables
Rad(x, tn+1), �

p
ad(x, tn+1), pad(x, tn+1) in the case of the Prandtl–Reuss model.

The admissible thermodynamic force Rad(x, tn+1) is assumed as

Rad(x, tn+1) = Max{R1, R2}
where

R1 = ‖�D
ad(x, tn+1)‖ − R0 and R2 = Rad(x, tn)

The admissible plastic strain, on the other hand, will be given by

�pad(x, tn+1) = h�pn+1(x)
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if the following condition is satisfied:

�ad(x, tn+1) : [h�pn+1(x) − �pad(x, tn)] � 0 (35)

otherwise we choose

�pad(x, tn+1) = �pad(x, tn)

Finally, with regard to the admissible accumulated plastic strain pad(x, tn+1) it is

pad(x, tn+1) = pad(x, tn) + ‖�pad(x, tn+1) − �pad(x, tn)‖

which corresponds to the integration of the equation ṗ = ‖�̇pad‖ that occurs for the model under
consideration by assuming linear variation of the variables over [tn, tn+1].

Condition (35), which represents the discrete implicit expression of the plastic power, can
be interpreted in the light of a constrained minimization of the pointwise contribution to the
error in the evolution law, �2d , within the time interval [tn, tn+1] [32].

In the case of change of finite element mesh at the time instant tn, the aforementioned
criteria can also be used to define the admissible solution corresponding to the finite element
solution at t+n , provided that one replaces tn+1 with t+n . The general procedure is summarized
in Box 2 whereas Figure 4 depicts schematically the notation relative to the finite element
solutions and corresponding admissible solutions.

Remark 5.1
In order to define an admissible solution, a hypothesis on the distribution over each element
of the state variables, which are obtained from the finite element solution at t+n at the Gauss
points of the new mesh, must be made. Hereafter, we refer to the distributions depicted in
Figure 3. As a result, the error in the constitutive equations must be considered as the error
associated with this given postulation for the variables distribution. This in turn allows for the
definition of the discontinuity of the fields across the time node tn.

Remark 5.2
The admissible solution at t−n is known at the Gauss points of the old mesh, which are
employed to compute numerically the space integrals that define the error at t−n . The element
based quadrature of the space integrals that define the error at t+n , on the other hand, requires
the knowledge of the admissible solution at t+n at the quadrature points of the new mesh.
In order to implement the procedure shown in Box 2, the values of the fields �pad(x, t

−
n ) and

pad(x, t−n ) at the quadrature points of the new mesh are necessary. These are simply obtained
by suitable interpolation of their values at the Gauss points of the old mesh.

Remark 5.3
The statically admissible stress fields �ad(x, t−n ) and �ad(x, t+n ) correspond to the same load
level but they are defined as prolongation of different finite element stresses.

For convenience we recall the expression of the augmented extended dissipation error by
highlighting the terms due to the change of mesh and the different contributions to the error
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Box 2. Procedure to build an admissible solution at t+n in the presence of change of mesh.

DATA:

Admissible solution at t−n

∣∣∣∣∣ �ad(x, t−n ), Rad(x, t−n )

�ad(x, t−n ), �pad(x, t
−
n ), pad(x, t−n )

Finite element solution at t+n

∣∣∣∣∣ u
hn+1
n (x), �hn+1

n (x) = ∇su
hn+1
n (x)

hn+1�pn(x), hn+1pn(x), hn+1�n(x)
FIND:

Admissible solution at t+n

∣∣∣∣∣ �ad(x, t+n ), Rad(x, t+n )

�ad(x, t+n ), �pad(x, t
+
n ), pad(x, t+n )

WHERE

Admissible generalised
stress field at t+n :
�ad(x, t+n ), Rad(x, t+n )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
�

�ad(x, t+n ) : ∇�(x) d� =
∫

�
bn(x)�(x) d� +

∫
��1

tn(x)�(x) ds, ∀� ∈ V0

∀�hn+1
e ∈ Thn+1 ,

∀Ni , ∀ vertex nodes i

∫
�

hn+1
e

[�ad(x, t+n ) − hn+1�n(x)] : ∇Ni d� = 0

Rad = max{R1, R2}
where R1 = ‖�D

ad(x, t
+
n )‖ − R0

R2 = Rad(x, t−n )

Admissible kinematic
solution at t+n :
�ad(x, t+n ),

�pad(x, t
+
n ), pad(x, t+n )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

uad(x, t+n ) = uhn+1
n (x), �ad(x, t+n ) = ∇suad(x, t+n )

IF �ad(x, t+n ) : [hn+1�pn(x) − �pad(x, t
−
n )] � 0

�pad(x, t
+
n ) = hn+1�pn(x)

ELSE

�pad(x, t
+
n ) = �pad(x, t

−
n )

END IF

p
p
ad(x, t

+
n ) = pad(x, t−n ) + ‖�pad(x, t+n ) − �pad(x, t

−
n )‖

from the parts of the admissible solution which are continuous in time

e
n,c2

ext (T ) = MAX

{ eo2
ext(t

−
n )︷ ︸︸ ︷

sup
t � t−n

[
2

∫
�

sl�2x,t d�︸ ︷︷ ︸
�o2
sl (t)

+ 2
∫

�

∫ t

0

d�2x,� d� d�︸ ︷︷ ︸
�o2
d (t)︸ ︷︷ ︸

�o2 (t)

]
,

(36)
sup

t+n � t � T

[
2

∫
�

sl�2x,t d�︸ ︷︷ ︸
�n,c2
sl (t)

+�o2

d (t−n ) + 2
∫

�

��2d(x, tn) d�︸ ︷︷ ︸
��2d (tn)

+ 2
∫

�

∫ t

t+n

d�2x,� d� d�︸ ︷︷ ︸
[t+n ,t]�n,c2

d

]

︸ ︷︷ ︸
�n,c2 (t)

}
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Figure 4. Finite element solutions and admissible solutions for change of finite element mesh
Thn → Thn+1 at the time instant tn.

In Equation (36), the notation e
n,c2

ext (T ) has been adopted in place of �e2ext(T ) used in
Equation (26). Here, the superscripts ‘o’ and ‘n, c’ stand for old and new mesh (after change),
respectively.

In (36) we can distinguish primarily two terms. One, �2d , is related to the history of the
variables by means of an L1 accumulation in time of the error in the evolution law, whereas the
other term, �2sl, depends on the current value of the error in the state law. As a result, following
the change of a mesh, only the term �2sl can be reduced whereas the term �2d increases by at
least the quantity ��2d . Therefore, there is an immediate advantage to change mesh for given
definition of the initial data if at least the following inequality is satisfied:

�o2

sl (t
−
n ) � �n,c2

sl (t+n ) + ��2d(tn) (37)

The occurrence of (37) guarantees that �n,c(t+n ) � eo
ext(t

−
n )

Remark 5.4
There will be no convenience to change mesh if the error associated with the evolution law,
which is the error component that cannot be reduced for being associated with the quality of
the solution up to the current time tn, assumes values close to the prescribed global tolerance,
that is, if the error associated with the past history of the solution has been significant. This
circumstance would indicate that if a global control of the solution is sought for, the incremental
finite element analysis should be repeated from some earlier time instant by starting with a
finer initial mesh [41].

6. NUMERICAL ILLUSTRATION

The aim of this example is to illustrate a methodology for the assessment of the quality of
the finite element solution obtained with an incremental procedure and in presence of change
of the finite element mesh at the time instant tn. The methodology is presented on the one
dimensional elastoplastic bar under distributed axial loads depicted in Figure 5.
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Figure 5. 1D Model problem.

Figure 6. Change between non-embedded meshes.

The bar is assumed to be composed of an elastoplastic material which obeys the Prandtl–
Reuss plasticity law with linear hardening.

The initial discretization of the model problem is realized with uniform time step �t = 1.5
and the non uniform mesh me1 of 14 linear elements depicted in Figure 6.

A prescribed type of change of mesh between non-embedded meshes is assumed to occur
at the time tn = 25.5. At this time instant plastic loading starts to localize once the load has
been reversed in sign. The condition Vhn ⊂ Vhn+1 is not realized. Nevertheless, the mesh
associated with Vhn+1 is chosen to contain a larger number of elements. In particular, the new
mesh me2es has been obtained by considering 28 linear equally spaced finite elements. Figure
6 shows the time discretization and the time instant when the change from the old mesh me1
to the new mesh me2es occurs.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:1595–1631



1620 A. ORLANDO AND D. PERIĆ

Three types of definition of initial state 
̃pn(x), p̃n(x) on the new mesh me2es to restart the
finite element analysis at the time tn = 25.5 have been taken into account. These definitions
exemplify the three groups of transfer procedures introduced in Section 5.

The variationally consistent transfer is obtained by sampling at the Gauss points of the
new mesh the fields hn
pn(x) and hnpn(x), whose distribution assumption must comply with
the requirements dictated by Equation (32). Here, these fields have been obtained over each
element as prolongation into a constant function of the value at the respective unique Gauss
point used for the quadrature of the elemental contribution to the internal virtual power.

The initial state 
̃pn(x), p̃n(x) obtained from the weak enforcement of the continuity with the
fields hn
pn(x), hnpn(x), which is hereafter referred to as the L2 transfer, is given by

∀e = 1, 2, . . . , Nhn+1
(38)

(•̃)en(x) =

∫ x
hn+1
e+1

x
hn+1
e

hn(•)n(x) dx

x
hn+1
e − x

hn
e

∀x ∈]xhn+1
e , x

hn+1
e+1 [

where Nhn+1 is the number of elements in the triangulation Thn+1 and the superscript ‘e’ stands
for element. The transfer defined by Equation (38) assumes a constant value for (•̃)en(x) over

each element �hn+1
e ∈ Thn+1 . This value is equal to the weighted average of the field hn(•)n(x),

with the weight given by the area of the so called tributary regions. For the problem at hand,
these regions are defined as the parts of the element, �hn+1

e = [xhn+1
e , x

hn+1
e+1 ], of the new mesh

where the field hn(•)n(x) is constant.
Finally, the transfer introduced in Reference [21] has been used as an example of smoothing

transfer. Once the data 
̃pn, p̃n at the Gauss points of the new mesh have been assigned, we
consider the finite element solution at t+n corresponding to load increment equal to zero, i.e.
load level equal to q(x, tn) = �(tn)x. This delivers a system state which is in equilibrium with
respect to the new mesh.

Plastic strain hn+1
pn and accumulated plastic strain hn+1pn obtained at the single Gauss points
of each element of the new mesh are prolongated into a uniform field over the respective
element. The effects of the data equilibration for each transfer are visualized in Figure 7. Here,
a variation of the initial state defined by the given transfer procedure is noted. In particular,
then, a saw-tooth distribution has been obtained in the case of L2 transfer. In this same
picture we have also plotted the distributions hn
pn(x), hnpn(x) so that one can appreciate the
discontinuity jump of these fields at tn as a result of the change of mesh.

The corresponding admissible solutions necessary to compute the augmented extended dis-
sipation error are obtained following the criteria given in Box 2. The distributions of the
admissible plastic strain and the admissible accumulated plastic strain at t−n and t+n are de-
picted in Figure 8 which shows the time discontinuity in these fields.

The accumulated plastic strain pad(x, t+n ) differs from the corresponding finite element so-
lution in almost all elements for all the transfers. This difference is due to the definition of
pad(x, t+n ) in terms of �
pad(x) and pad(x, t−n ) and represents an essential feature in the as-
sessment of the global quality in time of the solution. In fact, pad(x, t−n ) accounts for the
history of the solution up to the current time tn whereas the finite element solution hn+1pn(x)
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Figure 7. Plastic strain and accumulated plastic strain distribution at tn = 25.5
resulting from different transfer operations.

is computed in terms of p̃n(x). The latter field is given by the specific transfer procedure, thus,
information on the accuracy associated with the past values of the solution could be lost. The
definition of pad, on contrary, accounts for the approximations associated with the variable up
to the current time tn.
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Figure 8. Admissible plastic strain and admissible accumulated plastic strain distribution
at tn = 25.5−, tn = 25.5+ and plots of hn+1(•)n(x) obtained from equilibration of the data

with respect to the new mesh.

The time evolutions of the augmented extended dissipation error of the admissible solutions
corresponding to the finite element solutions resulting from the three different transfers are given
in Figure 9. All the diagrams present similar qualitative behaviour. A global improvement of
the quality of the solution by considering the proposed transfers for the given change of mesh
is noted. In particular, the solution resulting from L2 transfer appears to behave slightly better
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Figure 9. Time evolution of the augmented extended dissipation error with its components for different
type of transfer at tn = 25.5. Variationally consistent, L2 and smoothing transfer.
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Figure 10. Evolution in time of the effectivity index.

out of the proposed transfer procedures. This is shown by the time variation of the current
error �n,c(t). In the case of the L2 transfer, the evolution of �n,c(t) is the closest to en

ext(t),
where en

ext(t) is the extended dissipation error which is obtained with the dense finite element
mesh me2es that is constant throughout the loading process.

The extended dissipation error computed at each time ti , as given by Equation (36), and the
error in solution, as given by Equation (29), have been used to define the effectivity index

�(t) = eext(t)

eex(t)
(39)

as is usually done for elliptic problems [42]. The time evolution of �(t), shown in Figure 10
is identical for all the schemes resulting from the different transfer assumptions. Both the
augmented extended dissipation error and the exact error which enter Equation (39) involve
L∞ control in time. Consequently, following the change of mesh, reduction of the error with
value equal to the one related to the same initial mesh me1 is obtained.

Tables I and II contain the values at t−n , t+n and tn+1 of the several components of the aug-
mented extended dissipation error defined by Equation (36). This table allows one to appreciate
the differences between different transfer procedures and the corresponding importance of the
additional term ��d on the current error �. For completeness, we have also given the values
which are obtained by assuming the finite element meshes me1 and me2es constant in time
during the whole loading process, whereas the values at the time tn+1 are reported to illustrate
the influence of the transfer procedure at a later time.

When the variationally consistent transfer is used, the lowest value of the free energy norm
of the error, �n,c

sl , at t+n is attained. This is essentially the result of the best fit between the
admissible stress and the stress conjugate to the admissible elastic strain as shown in Figure 11.
The fit between the admissible thermodynamic forces and the forces conjugate to the admissible
accumulated plastic strain, depicted in Figure 12, conversely, appears to be best in the case of
the L2 transfer. As for the effects of the transfer, with the adoption of the variationally consistent
transfer, the non-uniform redistribution of the initial state 
̃pn, p̃n following the equilibration of
the data produces concentration of plastic strain in the elements 23 and 27. This, in turn, gives
rise to an admissible accumulated plastic distribution pad(x, t+n ) which is substantially different
from the distribution of the admissible hardening forces at t+n . This difference is kept also at
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Table I. Comparison of the error components at time tn = 25.5 and tn+1 = 27.0.

tn = 25.5

eext � �sl

�esl

�
p
sl �d

��d
��d/�

me1 0.355 0.355 0.282 0.141
0.244

0.215 — —

me2es 0.236 0.236 0.131 0.057
0.118

0.196 — —

me1→me2es
Var. transfer

0.355
t+n

0.278
t+n

0.173
t+n

0.076
0.156

0.218
t+n 0.033 0.12

me1→me2es
L2 transfer

0.355
t+n

0.284
t+n

0.184
t+n

0.110
0.148

0.216
t+n 0.014 0.05

me1→me2es
Sm.transfer

0.355
t+n

0.316
t+n

0.222
t+n

0.144
0.168

0.225
t+n 0.064 0.20

Table II. Comparison of the error components at time tn+1 = 27.0.

tn = 27.0

eext � �sl

�esl

�
p
sl �d

��d/�

me1 0.396 0.396 0.319 0.160
0.276

0.235 —

me2es 0.245 0.245 0.146 0.063
0.132

0.197 —

me1→me2es
Var. transfer 0.355 0.294 0.190 0.075

0.174
0.224 0.11

me1→me2es
L2 transfer 0.355 0.270 0.159 0.074

0.141
0.218 0.05

me1→me2es
Sm. transfer 0.355 0.291 0.179 0.081

0.160
0.229 0.22

tn+1 and is the cause of the increase of the error associated with the residual in the hardening
law at the time tn+1.

With the L2 and smoothing transfer, on contrary, the error in the state law at tn+1 decreases
with respect to t+n . This decrease can be considered due mainly to the enhanced approximation
properties of the new interpolation space whose effects are soon evident on the variation of
admissible plastic strain. Therefore, for these two transfers, unlike the variationally consistent
transfer, the values of the error at t+n can be assumed to reflect the effects more pertinent to
the transfer procedure. For the variationally consistent transfer, on contrary, also the value of
the error at tn+1 must be considered.
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Figure 11. The error in the elastic law at t = 25.5+ after change of mesh with different transfer
operations: (a) variationally consistent transfer: admissible stress ad versus stress conjugate of the
admissible elastic strain C
ead; (b) variationally consistent transfer: pointwise contribution to the error
in the elastic law, 1

C (ad − C
ead)
2; (c) L2 transfer: admissible stress ad versus stress conjugate

of the admissible elastic strain C
ead; (d) L2 transfer: pointwise contribution to the error in the
elastic law, 1

C (ad − C
ead)
2; (e) smoothing transfer: admissible stress ad versus stress conjugate of

the admissible elastic strain C
ead; and (f) smoothing transfer: pointwise contribution to the error
in the elastic law, 1

C (ad − C
ead)
2.

Finally, for the model under consideration and further to the definition of the admissible
solutions, it follows [32]

��2d(x, tn)=‖�
pad‖
2

[R0+Rad(x, t+n )−‖D
ad(x, t+n )‖]+‖�
pad‖

2
[R0+Rad(x, t−n )−‖D

ad(x, t−n )‖]
(40)

where, in general, f (ad, Rad) = R0 + Rad(x, t) − ‖D
ad(x, t)‖ � 0.
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Figure 12. The error in the hardening law at t = 25.5+ after change of mesh with different trans-
fer operations: (a) variationally consistent transfer: admissible thermodynamic force Rad versus force
conjugate of the admissible accumulated plastic strain Hpad; (b) variationally consistent transfer:
pointwise contribution to the error in the hardening law, 1

H (Rad − Hpad)
2; (c) L2 transfer: admis-

sible thermodynamic force Rad versus force conjugate of the admissible accumulated plastic strain
Hpad; (d) L2 transfer: pointwise contribution to the error in the hardening law, 1

H (Rad − Hpad)
2;

(e) smoothing transfer: admissible thermodynamic force Rad versus force conjugate of the admis-
sible accumulated plastic strain Hpad; and (f) smoothing transfer: pointwise contribution to the

error in the hardening law, 1
H (Rad −Hpad)

2.

Thus, Figures 13–15 allow comparisons of the different contributions to the jump term
��d(tn) = ∫

�
��2d(x, tn) dx for the transfer procedures under consideration. These are obtained

by comparing the plastic strain, which is introduced by the transfer, to the evolution of the
admissible generalized stress field. In particular, the contribution appears to be highest in the
case of the smoothing transfer assumption as a result of the so-called diffusion of plastic
strain. The smoothing transfer assumption produces in the elements 15,16 and 18 a variation
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Figure 13. Variationally consistent transfer: (a) variation of admissible plastic strain
at tn = 25.5; (b) space distribution of f (ad, Rad) at t−n and t+n ; and (c) pointwise

contribution to the jump term ��d(tn).

Figure 14. L2 transfer: (a) variation of admissible plastic strain at tn = 25.5; (b) space distribution of
f (ad, Rad) at t−n and t+n ; and (c) pointwise contribution to the jump term ��d(tn).
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Figure 15. Smoothing transfer: (a) variation of admissible plastic strain at tn = 25.5; (b) space
distribution of f (ad, Rad) at t−n and t+n ; and (c) pointwise contribution to the jump term ��d(tn).

of admissible plastic strain, as shown in Figure 15(a), whereas the variation of f (ad, Rad),
given in Figure 15(b) indicates that the behaviour associated with (ad, Rad) should be elastic,
since f � 0 therein.

7. CONCLUSIONS

In this work, we have presented a general methodology for the assessment of the global quality
of displacement finite element solutions of elastoplastic problems discretized in time with the
backward Euler method on dynamically changing mesh. With this regard, a new measure of the
error in the constitutive equations which account for time discontinuity jumps in the admissible
solution has been developed.

With the methodology set in this work, a more rational treatment of the transfer operation
seems possible to be devised in the context of the ensuing error. This should therefore lead
to the definition of a transfer operation such as the one that minimizes the error produced.
The definition of time step size, mesh size and indication on how to change mesh and to give
data are not separate steps arising from heuristic arguments but should result from a unified
analysis of the error contribution of each component.

One aspect of the future research effort will focus on implementation and numerical assess-
ment of the described procedure for higher dimensional problems.
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