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”No numerical method can be considered satisfactory,

unless something is known about the behaviour

of the error e(p) of the method as a function of p.”

Peter Henrici in ”Discrete Variable Methods in Ordinary Differential Equations”



Summary

The use of adaptive strategies in the finite element solution of history-dependent
problems with incremental methods is of paramount importance. An adaptive strat-
egy can be defined as a computational procedure which delivers the finite element
solution for the problem at hand to the prescribed accuracy. Key ingredients are:
(i) the availability of an error estimator which accounts for the sources of error as-
sociated with the approximation, (ii) error indicators for the choice of the optimal
discretization parameters, and finally (iii) a data transfer procedure in the case the
current finite element mesh is different from the one of the previous time step.

When the finite element mesh is changed at time tn, two finite element solutions
are considered for the same load level: the one at t−n is associated with the old
mesh Thn , and the other at t+n is associated with the new mesh Thn+1 . The latter
is computed by equilibrating the data defined by the specific transfer procedure.
Consequently, a discontinuity jump will appear in the time linear interpolation of
the discrete values across the time node tn. The global accuracy in time of the
solution, therefore, will have to depend not only on the time step and finite element
mesh size but also on the value of the jump.

In this work, a new error estimate is proposed and obtained as measure of
the error in the constitutive equations produced by a time discontinuous admissible
solution.

The new estimate presents a term which characterizes the time discontinuity,
thus it lends itself for the assessment of the effects of transfer procedures in displace-
ment finite element solutions of rate–independent plasticity discretized in time with
the backward Euler method.

The new theory is formulated in tensorial notation and its applicability is
illustrated on a one dimensional model problem where a detailed study of transfer
procedures is carried out with numerical results providing confirmation of theoretical
developments.

With the new theory, indications on how to change the finite element space
and to define the corresponding data can be given and the assessment of the several
transfer operations can be finally framed in the context of the ensuing error.
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Chapter 1

Introduction

In the scientific approach to the solution of engineering problems mathematical
models are developed that describe the essential physical aspects of the problem.
Mathematical models are mostly expressed in terms of complex differential and/or
integral equations, and their solution in the majority of practical situations is im-
possible in the closed form. Therefore various approximation techniques have been
used in obtaining some form of the approximate solution of the original problem.

It was not until the mid-fifties and advances in computer technology that
made the approximate methods a powerful approach to the solution of practical
engineering problems. Since then the approximate methods, and the finite element
method in particular, have become the principal approach to solution of a large
number of industrial applications in all areas of engineering including structural,
civil, mechanical, aeronautical, chemical and since recently biomedical engineering.

One of the principal difficulties associated with the use of the finite element,
and other approximate methods, is related to the accuracy, i.e., closeness of the
approximation to the solution of the original problem. Since the closed form is not,
in general, available the so-called error estimation techniques have been proposed.

The interest is here given to the discretization errors, which are caused by
the numerical discretization of the continuous mathematical model. These involve
approximations with the finite elements for the space variable and with the backward
Euler method for the time variable. A first question is, therefore, to quantify the
distance between the approximate solution and the exact solution. This is typified
by the choice of a norm which is usually indicated by the functional setting in
which the variational formulation is posed. These measures have usually global
character, in the sense that the values of the function and/or its derivatives all over
the space-time domain of interest are involved. In general, one can define measure
of the error as a non–negative scalar function depending on the approximate and
exact solution and describing the extent to which the approximate solution fails to
coincide with the exact solution. This definition generally involves the knowledge of
the exact solution which is unknown. Thus, the question of providing an estimate of
this distance comes quite naturally. In particular, our interest is in a posteriori error
estimates, that is, estimates of a given measure of the error that are constructed after
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the finite element solution has been computed, and they utilize the finite element
solution and the input data of the concrete case of interest. These are different from
a priori error estimates which are based on a knowledge of the characteristics of
the exact solution, and provide qualitative information about the asymptotic rate
of convergence of the approximation as the discretization parameters approach their
corresponding limit values.

A posteriori error estimates play an important role in two related aspects of
finite element calculations. First, such estimates provide the user of a finite element
code with valuable information about the overall accuracy and reliability of the cal-
culation. Second, since most a posteriori error estimates are computed locally, they
also contain significant information about the distribution of error among individ-
ual elements, referred to as error indicators, which can form the basis of adaptive
procedures. However, error indicators can also be developed on heuristics and may
have no direct relation with the error.

Use of adaptive strategies in solid mechanics for the finite element solution of
history-dependent non–linear problems solved by employing incremental methods is
of paramount importance. An adaptive strategy can be defined as a computational
procedure which delivers the finite element solution for the problem at hand to the
prescribed accuracy. Key ingredients are: (i) the availability of an error estimator
which accounts for the sources of error associated with the approximation, (ii) error
indicators for the choice of the optimal discretization parameters, and finally (iii) a
data transfer procedure when the current finite element mesh is different from the
one of the previous time step.

In the finite element analysis of these problems the quality of the simulation is
generally assessed by physical or heuristic arguments based on the experience and
judgement of the analyst. Frequently such arguments are later proved to be flawed,
they are specific for the problem under consideration and often they fail to account
for all the discretizations introduced, which therefore can produce a misleading trust
in the accuracy of the approximate solution produced.

1.1 The scope of the thesis

The extended dissipation error developed in Ladevèze et al. (1999) applied to the
assessment of the accuracy of the finite element solution obtained by a fully im-
plicit displacement formulation of the elastoplastic problem is able to account for
the effects of time and space discretization. The analysis, however, is carried out by
assuming the finite element mesh constant throughout the loading process. A prop-
erty of this error is its non–decreasing character in time due to the accumulation
of the discretization errors. As a result, during the computation with incremental
procedures, one may need to modify the parameters which define the fully discrete
scheme, namely time step size and finite element mesh, in order to obtain the cor-
responding solution to the prescribed global accuracy.

When only variation of the time step is sufficient to improve the accuracy of
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the solution, the extended dissipation error can be used to assess the global quality
of the finite element approximation because of the time continuity of the associated
admissible solution. On contrary, when the finite element mesh is changed at time
tn, two finite element solutions are considered for the same load level: the one at t−n ,
which is associated with the old mesh Thn , and the other at t+n , which is associated
with the new mesh Thn+1. The solution at t+n is employed to define a time linear
interpolation function which we require to satisfy the following property

lim
∆t↓0

fd(tn + ∆t) = lim
∆t↓0

fi(tn + ∆t)

where fi = fi(tn + ∆t) denotes the time linear interpolation over the time interval
[t+n , t

−
n+1] of the discrete values f+

n and f−
n+1 whereas fd = fd(tn +∆t) is the function

which associates with any given ∆t the solution of the discrete scheme corresponding
to the given ∆t and data f+

n . Consequently, a discontinuity jump appears in the
time linear interpolation of the discrete values across the time node tn as a result
of the change of mesh and transfer procedure. In the development of reliable a
posteriori error estimators, one needs, therefore, to account not only for the time
step and finite element mesh size but also for the value of the jump.

In this work, attention is given only to the error estimation procedure itself.
With this regard, an error estimator is proposed which allows the assessment of
the effects of transfer procedures in displacement finite element solution of rate–
independent plasticity discretized in time with the backward Euler method. The
extended dissipation error developed in Ladevèze et al. (1999) will be augmented
consistently by a term which accounts for the time discontinuity in the admissible
solution. The new theory is formulated in tensorial notation and its applicability is
illustrated on a one dimensional model problem where a detailed study of transfer
procedures (Ortiz & Quigley, 1991; Perić et al., 1996; Rashid, 2002) is carried out
with numerical results providing confirmation of theoretical developments. With
such a posteriori error estimator at hand, indications on how to change the finite
element space and define the corresponding data can be given and the assessment
of the several transfer operations can be finally framed in the context of the ensuing
error.

1.2 Layout

This thesis is divided into two parts. The first one deals with the theory of the
measure of the error in the constitutive equations. The theory is general and applies
to admissible solutions for the problem under consideration. In the second part
applications to the assessment of accuracy of finite element solutions of the initial
boundary value problem in elastoplasticity are given.

The first part of the thesis, after this introductory chapter, is arranged as
follows:

Chapter 2 gives a brief overview of some error estimators for linear and
nonlinear problems. The objective is to illustrate the motivating ideas behind each
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of the proposed techniques and to provide motivation for the use of the error in the
constitutive equations for the assessment of the accuracy of finite element solutions
on evolving meshes.

Chapter 3 presents the general theory of the error in the constitutive equa-
tions to assess the quality of the so–called admissible solutions of dissipative non-
linear problems. We employ the theory of the extended dissipation error developed
by Ladevèze et al. (1999) to accommodate admissible solutions with a discontinuity
jump at the time instant tn. This leads to a new error estimate which we call aug-
mented extended dissipation error.

In the second part of the thesis, the arrangement is as follows:
Chapter 4 reports on the displacement finite element method for the solu-

tion of the initial boundary value problem of an elastoplastic model with internal
variables and discusses the nature of the ensuing discretization errors. In particular,
there is the fundamental observation that change of data and/or finite element mesh
from one time interval to the other can be both related to a discontinuity jump of
the approximate solution across the time instant tn. Consequently, in the develop-
ment of reliable a posteriori error estimates one needs to account also for the jump.
A critical review of the current techniques to transfer data from one mesh to the
other concludes the chapter.

Chapter 5 focuses mainly on how to use the extended dissipation error to
assess the quality of the finite element solution with constant mesh in time. The main
problem is, therefore, the definition of a corresponding admissible solution, which
reflects the approximations associated with the finite element solution. After giving
general guidelines, actual criteria to construct an admissible solution in the case of
the Prandtl–Reuss model are given. The general theory is then applied to assess the
quality of the finite element solution of one dimensional elastoplastic bar under axial
load. The example shows that all trends on the error in the state laws and dissipation
contribution are meaningful. Notable is also the comparison with classical measures
of the exact error in solution. This shows that the extended dissipation error reflects
quite well the evolution of the admissible solution with respect to the exact one as
described by more classical measures of the error. Comparison with the classical
dissipation error introduced in Ladevèze (1989) and developed in Ladevèze & Moës
(1997) concludes the chapter.

Chapter 6 presents a general methodology for the assessment of the global
quality of displacement finite element solutions of elastoplastic problems discretized
in time with the backward Euler method on dynamically changing meshes. The
methodology employs the extended dissipation error, augmented by the term which
accounts for the time discontinuity in the admissible solutions. Its applicability is
shown on a one dimensional model problem where a detailed study of the transfer
operators is presented. The numerical results provide confirmation of the theoretical
developments.

Chapter 7 presents a short summary and the conclusions of this work. Some
suggestions for future research are finally given.
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Chapter 2

Overview on a posteriori error
estimates. Literature Review

2.1 Introduction

In this chapter we give a brief overview on some error estimators for linear and non–
linear problems. The objective is mainly to illustrate the motivating ideas behind
each of the proposed techniques, rather than attempting to provide a (necessarily
incomplete) list of error estimators. We start, therefore, with reviewing some a pos-
teriori error estimators for linear elliptic problems where it is possible to provide a
theoretical unifying framework, which encompasses most of the existing procedures.
Such analysis has been presented in Verfurth (1996), for instance. The advances
obtained in the comprehension of the mechanism of error propagation corresponds
to the maturity reached in the theory of linear elliptic partial differential equations
(Evans, 1999) and their finite element approximation (Ciarlet, 1978). On contrary,
the remaining class of problems, and in particular the mathematical models de-
scribing rate–independent and rate–dependent plasticity, present a far less unified
approach, as the various types of nonlinearity are involved in quite different ways.
However, for the class of problems which can be analysed with the methods of the
convex analysis it is possible to identify some underlying threads. These derive from
the duality theory which is a modern branch of the calculus of variation originated
from the works of Fenchel, Moreau, Rockafellar and others. The key idea of the the-
ory – simultaneous analysis of the primal and the so–called dual variational problem
– is, for instance, exploited in the works of Ainsworth & Oden (1993); Ladevèze &
Pelle (2001) and Paraschivoiu et al. (1997), thus representing an important tool in
the a posteriori error analysis for those classes of problems.

2.2 Linear problems

The main concepts for the global control of the discretization error in energy norm for
linear elliptic partial differential equations are next presented for the displacement
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formulation of the model of linear elasticity. At this end, some preliminaries are
necessary.

Let Ω be a bounded open connected subset of the three dimensional Euclidean
space with polyhedral boundary ∂Ω = ∂Ωd ∪ ∂Ωt and ∂Ωd ∩ ∂Ωt = ∅. Here, ∂Ωd

denotes the part of ∂Ω where a prescribed displacement vector ud is fixed whereas
the complementary part ∂Ωt is where the boundary traction forces vector t are
applied. The displacement vector field u = u(x) of the linear elastic model under
the body force vector field b is solution of the following variational problem

∣
∣
∣
∣
∣
∣
∣

Find: u ∈ ud + V0

∫

Ω

C∇su : ∇η dΩ =

∫

Ω

b · η dΩ +

∫

∂Ωt

t · η ds ∀η ∈ V0

(2.1)

where C is the definite positive Hooke’s fourth order tensor, ∇su is the symmetric
part of the second order tensor ∇u, gradient of u§, and V0 is the infinite–dimensional
space of the test functions defined as V0 = {v = {vi}3

i=1 ∈ [H1(Ω)]3
∣
∣v = 0 on ∂Ωd}

with H1(Ω) the standard Sobolev space of scalar functions vi of L2(Ω) with finite
norm ∫

Ω

v2
i dΩ +

∫

Ω

(∇vi)
2 dΩ <∞.

The well–posedness of problem (2.1) follows from the Lax–Milgram theorem, for ∂Ωd

has positive measure (Ciarlet, 1978). Furthermore, the latter and the properties of
C permit one to conclude that the bilinear form

(v,w)V0 =

∫

Ω

C∇sv : ∇w dΩ (2.2)

defines an inner product in the space V0. The associated norm is referred to as the
energy norm; it is equivalent to the standard norm of V0 and it is given by

|||v||| def
=

(∫

Ω

C∇sv : ∇v dΩ

) 1
2

= sup
w∈V0

∣
∣
∣
∣

∫

Ω

C∇sv : ∇w dΩ

∣
∣
∣
∣

|||w||| , (2.3)

where the second equality follows from the Cauchy-Scwartz’s inequality. Hereafter,
the space V0 is endowed with the energy norm.

We will consider conforming finite element approximations of the problem
(2.1). With this regard, let Th = {Ωe} be a finite element partition of Ω made up
of polyhedrons Ωe with faces γ. We denote with Eh,Ω and Eh,∂Ωt the sets of the
faces which are contained in Ω (i.e., the interior faces) and in ∂Ωt, respectively. For

§The symbol : in (2.1) denotes the double contraction operator. When it acts between second
order tensors it delivers a scalar whereas when it acts between a second order tensor and a vector
the outcome is a vector. The symbol · is, on the other hand, the inner product between vectors.
We also recall that the action of a fourth order tensor on a second order tensor is a second order
tensor. For the definitions of operations on tensors we refer to Gurtin (1981).
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each face γ ∈ Eh,Ω we denote a fixed unit normal vector n, chosen arbitrarily from
the two possibilities. For the faces γ ∈ Eh,∂Ωt, n is the outward normal to Ω. The
definition of the elements Ωe,in and Ωl,out in relation to n is depicted in Figure 2.1.
Let Vh

0 ⊂ V be any conforming finite element space associated with Th and {Nh
i } the

Figure 2.1: Definition of the elements Ωe,in and Ωl,out in relation to n

basis of the finite element shape functions. The finite element solution uh ∈ ud +Vh
0

of the problem (2.1) is given by
∣
∣
∣
∣
∣
∣
∣

Find: uh ∈ ud + Vh
0

∫

Ω

C∇suh : ∇ηh dΩ =

∫

Ω

b · ηh dΩ +

∫

∂Ωt

t · ηh ds ∀ηh ∈ Vh
0

(2.4)

Thus, the discretization error e = u − uh is solution of the variational problem
∣
∣
∣
∣
∣
∣
∣

Find: e ∈ V0

∫

Ω

C(∇se) : ∇η dΩ =

∫

Ω

b · η dΩ +

∫

∂Ωt

t · η ds−
∫

Ω

C∇suh : ∇η dΩ, ∀η ∈ V0

(2.5)
and, one has the error representation formula

|||e|||2 =

∫

Ω

C(∇se) : ∇e dΩ =

∫

Ω

b ·e dΩ+

∫

∂Ωt

t ·e ds−
∫

Ω

C∇suh : ∇e dΩ. (2.6)

The functional

Ruh
(η) =

∫

Ω

b · η dΩ +

∫

∂Ωt

t · η ds−
∫

Ω

C∇suh : ∇η dΩ, (2.7)

which appears at the right hand side of equation (2.5), is referred to as residual
functional of uh with respect to (2.1). It can be shown that it is an element of the
dual topological space‡ V?

0 of V0. From (2.4) and accounting for the definition (2.7)

‡ Let V be a topological vector space. The dual topological space V? of V is the vector space
of the linear continuous functionals over V . If V is a normed space, a linear continuous functional

F(v) over V is a bounded functional, that is, sup
v∈V

|F(v)|
‖v‖V

<∞. In this case, the vector space V? is

endowed with the norm ‖F‖V? = sup
v∈V

|F(v)|
‖v‖V

(Brezis, 1986).
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it follows

Ruh
(ηh) =

∫

Ω

b ·ηh dΩ+

∫

∂Ωt

t ·ηh ds−
∫

Ω

C∇suh : ∇ηh dΩ = 0, ∀ηh ∈ Vh
0 (2.8)

that is, the residual functional Ruh
(ηh) vanishes over Vh

0 ⊂ V0. Thus, it is also

(e,ηh)V0 =

∫

Ω

C∇se : ∇ηh dΩ =

∫

Ω

(

σex − C∇suh

)

: ∇ηh dΩ = 0, ∀ηh ∈ Vh
0

(2.9)
which is the orthogonality condition between the discretization error e and the finite
element space Vh

0 with respect to the inner product defined by (2.2). Condition (2.9)
means that the error e ∈ V0 solution of (2.5) presents zero component in the space
Vh

0 .
The localization of the integrals in (2.7) over each finite element Ωe and use of

integration by parts gives

Ruh
(η) =

∑

Ωe∈T h

∫

Ωe

ruh
· η dΩ +

∑

γ∈Eh,∂Ωt∪Eh,Ω

∫

γ

Jγ
uh

· η ds =

=
∑

Ωe∈T h

{
∫

Ωe

ruh
· η dΩ +

∑

γ∈∂Ωe

∫

γ

Jγ
uh

· η ds

}

. (2.10)

In equation (2.10), ruh
= divC∇suh + b is the regular part of the global residual

associated with the lack of equilibrium of the finite element solution within the
interior of the elements Ωe, whereas Jγ

uh
has the following definition

Jγ
uh

=

{ [
C∇suh : n

]

γ
on γ ∈ Eh,Ω

t − C∇suh : n on γ ∈ Eh,∂Ωt

where
[
C∇suh : n

]

γ
denotes the jump of C∇suh : n across the edge γ ∈ Eh,Ω‖; this

value is independent on the choice of n. Thus, Jγ
uh

represents the singular part of
the global residual due to the lack of equilibrium in the normal tractions across the
interelement boundaries and on the boundary ∂Ωt, that is, on γ ∈ Eh,∂Ωt ∪ Eh,Ω.

Evaluating the discretization error means to solve the same linear elastic model
as (2.1) but with different boundary conditions and external loads. Now, the bound-
ary conditions are given by e = 0 on ∂Ωd and C∇se : n = t − C∇suh : n on ∂Ωt,
whereas the body forces are −div C∇suh−b over each element Ωe and

[
C∇suh : n

]

γ

are the surface loads applied on the faces γ ∈ Eh,Ω.
Nevertheless, problem (2.5) presents the same difficulty as the original prob-

lem (2.1), for it is posed in the infinite dimensional space V0. One could, therefore,
think of computing a finite element approximation eh of e. The adoption of the

‖Given γ ∈ Eh,Ω with n unit normal to γ and v a vector field defined in Ω, we denote by [v]γ
the jump of v across γ in the direction n: [v]γ(x) = lim

α↓0
v(x + αn) − lim

α↓0
v(x − αn), ∀x ∈ γ.

9



same finite element space Vh
0 would, however, deliver eh = 0, because of the orthog-

onality of e with respect to Vh
0 . If a more accurate approximation for the error e

is sought, this would be equivalent to solve the original problem. Furthermore, this
would also involve a computational effort that could be directed toward the evalu-
ation of a better approximation for the solution of (2.1). In such a case, however,
the error of the new more accurate finite element solution should presumably be
estimated in any case, so that the same dilemma re–appears (Ainsworth & Oden,
2000). Keeping at the minimum the computation cost for the assessment of the
accuracy of an approximate solution is, indeed, a fundamental feature of any error
estimation technique.

The current schemes for accurate and quantitative estimates for the discretiza-
tion error are usually classified according to how estimates of a given norm (or linear
functional) of e are obtained. Our attention is here mainly directed to the control
of the accuracy in energy norm. In particular, we will consider the residual type
and the averaging type error estimates.

2.2.1 Residual type error estimates

The residual functional Ruh
(η) is the forcing of the problem (2.5) that defines the

finite element error e. As a result, the solution of (2.5) will depend on Ruh
(η). The

starting point for this class of estimators can be assumed to be the equality between
the energy norm of the error and the norm of the residual functional in V?

0 . This
follows easily from the definition of norm of residual (see note ‡), equation (2.5) and
(2.3),

‖Ruh
‖V?

0
= sup

η∈V0

|Ruh
(η)|

|||η||| = sup
η∈V0

∣
∣
∣
∣

∫

Ω

C(∇se) : ∇η dΩ

∣
∣
∣
∣

|||η||| = |||e|||.

Estimates for |||e||| are, therefore, obtained by providing estimates of ‖Ruh
‖V?

0
.

In turn, these can be obtained either through a direct computation using the finite
element solution and the available data, or by solving local auxiliary problems, which
give a representation of the functional Ruh

= Ruh
(η). The first class of residual

error estimates are referred to as explicit whereas the second one is called implicit.

2.2.1.1 Explicit residual a posteriori error estimates

These estimators were first introduced in Babuska & Rheinboldt (1978b) for the
assessment of the accuracy of finite element approximations with higher order ele-
ments of 1D elliptic problems and then extended to 2D in Babuska & Rheinboldt
(1979b). The bound can be expressed, in general, as follows

|||e||| ≤
∑

Ωe∈Th

{

Ce
I,1he‖ruh

‖[L2(Ωe)]3 +
∑

γ∈∂Ωe

Ce
I,2h

1
2
e ‖Jγ

uh
‖[L2(∂Ωe)]3

}

(2.11)

where Ce
I,i, i = 1, 2 are interpolation constants (Ciarlet, 1978) which depend on the

shape of the element and the local order of the polynomial approximation, whereas
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he is the diameter of the element Ωe.
Apart from the constant Ce

I,i, all of the quantities on the right–hand side can
be computed directly from the finite element approximation and the data for the
problem of interest.

The relative importance of the two terms which appear in (2.11), the one
associated with the interior residual ruh

and the one associated with the jump
Jγ

uh
, was analysed for two–dimensional problems in Babuska & Miller (1987) and in

Babuska & Yu (1987) for the case of irregular grids of bilinear quadrilaterals and
biquadratic approximations, respectively. In the first case, the dominant term of
the estimate was the residual jump whereas in the second case the error could be
expressed only in terms of the residual in the interior of each element (see also the
work of Carstensen & Verfurth (1999), where it is proven that for general meshes of
linear triangles, the energy norm of the error may be estimated by employing only
the jump Jγ

uh
).

Error estimates in norms other than energy norm were analysed in Babuska &
Rheinboldt (1981), though for one dimensional problems. However, the theoretical
analysis appears quite cumbersome and not providing for an immediate extension.
A streamlining of the estimation technique was contributed noteworthily by Johnson
and coworkers in Eriksson & Johnson (1991); Johnson & Hansbo (1992); Eriksson
et al. (1995). Their works involve a number of basic ideas which represent also
the basis of the estimates for the quantity of interest. The gist of the procedure
is the duality argument used by Aubin and Nitsche for the derivation of a priori
error estimates in norms other than the energy norm (Ciarlet, 1978). The duality
argument is also used for the purpose of deriving a posteriori error estimates through
the following points (Johnson, 1994):

1. Error representation formula by means of a dual problem

2. Orthogonality of the Galerkin approximation

3. Interpolation error estimates

4. Strong stability of the dual problem

As an illustration of this procedure, we next sketch the control of the error in L2

norm. Also, for simplicity, we will assume that ∂Ωd = ∂Ω so that e ∈ V0. In this
case, the error representation formula is given by

‖e‖2
[L2(Ω)]3 =

∫

Ω

e · e dΩ =

∫

Ω

C
?∇sϕ : ∇e dΩ

where ϕ ∈ V0 is solution of the dual problem

∣
∣
∣
∣
∣
∣
∣

Find: ϕ ∈ V0

∫

Ω

C
?∇sϕ : ∇η dΩ =

∫

Ω

e · η dΩ ∀η ∈ V0

(2.12)
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and C
? is the adjoint of C‡‡. As a result of the definition of adjoint and the Galerkin

orthogonality (2.9), it is also

‖e‖2
[L2(Ω)]3 =

∫

Ω

C
?∇sϕ : ∇e dΩ =

∫

Ω

C∇se :
(
∇ϕ −∇IVh

0
ϕ

︸ ︷︷ ︸

ϕh

)
dΩ (2.13)

where IVh
0

: V0 → Vh
0 is a suitable Vh

0 –interpolation operator (Clément, 1975;
Bernardi & Girault, 1998).

From equation (2.5), the localization of the integral in (2.13) and the use of
Cauchy-Schwartz’s inequality, it follows

‖e‖2
[L2(Ω)]3 ≤

∑

Ωe∈Th

{

‖ruh
‖[L2(Ωe)]3‖ϕ − ϕh‖[L2(Ωe)]3 +

+
∑

γ∈∂Ωe

‖Jγ
uh
‖[L2(γ)]3‖ϕ − ϕh‖[L2(γ)]3

}

The terms ‖ϕ−ϕh‖[L2(Ωe)]3 and ‖ϕ−ϕh‖[L2(∂Ωe)]3 describe the weight of the terms
‖ruh

‖[L2(Ωe)]3 and ‖Jγ
uh
‖[L2(∂Ωe)]3 in the local contribution to the error in L2–norm,

respectively.
The use of the interpolation error estimates (Ainsworth & Oden, 2000)

‖ϕ−ϕh‖[L2(Ωe)]3 ≤ CIe,1‖∇ϕ‖[L2(Ω̃e)]3×3 , ‖ϕ−ϕh‖[L2(∂Ωe)]3 ≤ CIe,1‖∇ϕ‖[L2(Ω̃e)]3×3 ,

where Ω̃e is the patch of elements associated with Ωe
¶, along with the stability of

the global dual problem (2.12),

‖∇ϕ‖[L2(Ω)]3×3 ≤ Cs‖e‖[L2(Ω)]3

where Cs is the stability constant, it finally, gives

‖e‖[L2(Ω)]3 ≤ Cs

∑

Ωe∈Th

{

CIe,1he‖ruh
‖[L2(Ωe)]3 +

∑

γ∈∂Ωe

CIe,2h
1
2
e ‖Jγ

uh
‖[L2(γ)]3

}

.

The above error estimate does not admit cancellation between different elements Ωe

and on element level, as well. As a result, it is not very sharp. Furthermore, the

‡‡Let U and V be Hilbert spaces with inner product (•, •)U and (•, •)V , respectively. Given a
linear bounded operator A : U → V , there exists only one linear bounded operator A? : V → U
such that (Au,v)V = (u,A?v)U , ∀u ∈ U , ∀v ∈ V . A? is called the adjoint of A (Brezis, 1986).
Fourth order tensors can be defined as linear mappings between the finite–dimensional vector
spaces of second order tensors (Bonet & Wood, 1997). As a result, given C, its adjoint C

?
is the

fourth order tensor such that Cu : v = u : C
?
v, ∀u,v second order tensors.

¶Given an element Ωe of the mesh Th, the patch Ω̃e of elements associated with Ωe is the set
of elements Ωl which share an edge with Ωe. Given a vertex i of the mesh Th, the patch ωi of
elements associated with i is the set of elements Ωl which have i as one of its vertices (Verfurth,
1996).
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mechanism of error propagation is accounted for only through the global stability
constant Cs. In order to reflect better the local contribution of the local residual,
in the context of control of quantity of interest in linear elasticity, Rannacher &
Suttmeier (1997) implement only the steps 1, 2 and 3 of the above procedure. The
term ‖∇ϕ‖[L2(Ω̃e)]3×3 is computed numerically by simply taking the first order dif-

ference quotient of an approximate solution ϕh ∈ Vh
0 of the dual problem. This

procedure was further improved by Suli & Houston (2001) in the case of error con-
trol of output of hyperbolic problems. Only the steps 1 and 2 were implemented
and an approximation of the dual solution was retained in the bound as a local
weight–function.

2.2.1.2 Implicit residual a posteriori error estimates

Estimates of the norm of the residual can be also obtained by solving local problems
which define approximations to the local representation of the residual as opposite
to the explicit estimators described in the previous section, which are computed
directly in terms of the norm of the residuals ruh

and Jγ
uh

. Despite the simplicity of
implementation, the main disadvantages of the explicit estimators are the presence
of generally unknowns constants CI,i and the lack of sharpness of the bound. The
latter is consequence of various applications of the Cauchy-Schwartz inequality which
provokes the loss of cancellation between the various types of residual (Ainsworth
& Oden, 2000).

With the implicit approach, on contrary, in the definition of the estimate, one
tries to retain the structure of the equation (2.5), which defines the error, as far as
possible.

These estimators have, generally, the following format (Babuska & Strouboulis,
2001)

η =

√
∑

ωi∈R

‖eωi
‖2

where R = {ωi} is a covering of Ω and eωi
is solution of a boundary value problem

of the form ∣
∣
∣
∣
∣
∣
∣

Find: eωi
∈ S(ωi)

∫

Ω

C∇seωi
: ∇η dΩ = Fωi

(η), ∀η ∈ S(ωi)
(2.14)

with S(ωi) a suitable solution space and Fωi
(η) is defined in terms of the residuals

ruh
and Jγ

uh
.

According to the formulation of the auxiliary problems to solve, we distinguish

• subdomain residual error estimators;

• element residual error estimators;

• equilibrated element residual error estimators.
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The subdomain residual error estimator was first introduced by Babuska & Rhein-
boldt (1978a). The main argument is a localization via a partition of unity of Ω.
This leads to problems posed on the patch of elements ωi associated with each node
i. The solution space S(ωi) is a finite element space with its elements vanishing
on ∂ωi − ∂Ωt, continuous and piecewise polynomials of a sufficiently high degree
whereas Fωi

(η) is given by

Fωi
(η) =

∫

ωi

b · η dΩ +

∫

∂ωi∩∂Ωt

t · η ds−
∫

ωi

C∇suh : ∇η dΩ.

The function eωi
is, therefore, solution of a Dirichlet problem with homogeneous

essential boundary conditions on ∂ωi. Existence and uniqueness of this solution is
guaranteed by the Lax–Milgram’s theorem. The local patches used in this technique
are, however, rather expensive to approximate accurately. In effect, each element is
treated several times according to the number of patches with which it is associated.
Also, the error indicators ‖eωi

‖ are in this way associated with the patches ωi and
not with the single element Ωe. This makes more difficult the definition of an optimal
adaptive procedure based on ‖eωi

‖. The use of patch of elements ωi is essentially
a consequence of imposing Dirichlet boundary conditions on the auxiliary problems
and of certain conditions required for the reliability of the error estimator (Verfurth,
1996).

On contrary, if only Neumann boundary conditions are imposed on the auxil-
iary problems, one can choose ωi = Ωe (Verfurth, 1996). The resulting error estima-
tors are referred to as elemental types and an immediate outcome of this approach
is to have error indicators defined element by element. However, some care must be
taken to insure the local Neumann problems are well posed.

The different estimation techniques differ in the way the well–posedness is
achieved. With this regard, we distinguish the equilibrated elemental residual er-
ror estimators obtained by choosing the boundary data so that the underlying local
problem is well posed and the elemental residual error estimators obtained by choos-

ing the solution space S(Ωe) so that the bilinear form

∫

Ωe

C∇sv : ∇η dΩ is coercive.

For instance, the second and third version of the error estimates introduced by Bank
& Weiser (1985) are of the latter type, whereas the first version is of the former type,
which will be described later on.

In the elemental error estimates, the functional FΩe(η) is given by

FΩe(η) =

∫

Ωe

ruh
· η dΩ +

∮

∂Ωe

Jγ
uh,av · η ds =

=

∫

Ωe

b · η dΩ +

∫

∂Ωe∩∂Ωt

t · η dΩ −
∫

Ωe

C∇suh : ∇η dΩ +

∮

∂Ωe

Jγ
uh,av · η ds,

where Jγ
uh,av is obtained by averaging the jump Jγ

uh
between the elements sharing

the edge γ ∈ Eh,Ω as follows

Jγ
uh,av =

1

2

[

C∇su
Ωe,in

h : n + C∇su
Ωl,out

h : n
]

γ
.

14



In this case, special consideration must be given to the choice of the finite element
space S(Ωe) in order to guarantee the solvability of the local problems (2.14) and
to produce useful error estimators.

In the case of linear finite element approximations of scalar elliptic equations,
the space S(Ωe) used by Bank & Weiser (1985) to define the second and third
version of their error estimates, is the space of the so-called bubble functions, that
is, quadratic functions defined over Ωe and vanishing at its vertices. This space has
been then augmented by cubic bubble functions by Verfurth (1989) in the definition
of an error estimator for linear finite element approximations of Stokes equations.

Guidelines for choosing the space S(Ωe) are well established in the case of first
order finite element approximations and are discussed in Oden et al. (1989). In the
case of higher order finite element approximations, the selection of S(Ωe) is not an
easy matter. In general, the criterion is the same as the one underlying the error
estimates based on hierarchical bases (Bank & Smith, 1993): to increase the order of
the space used to construct the original finite element approximation and then form
the quotient space by subtracting the original finite element space. The influence
of the choice of the different spaces on the solution of the local problem has been,
however, investigated by Ainsworth (1996). A quite unsatisfactory state of affair has
been shown, due to the sensitivity of the estimate to the choice of S(Ωe). In some
cases the estimator is a gross overestimate, yet in others the estimated error is zero,
despite the true error being nonzero. An alternative possibility is given, therefore,
by the equilibrated element residual error estimates.

Likewise the estimators described previously, the equilibrated element residual
error estimates are obtained by solving local Neumann problems. In this case, the
well–posedness of the local problems is achieved by imposing the consistency of the
boundary data. The idea is to consider an equilibrated splitting of the interelement
flux Jγ

uh
such that

∣
∣
∣
∣
∣
∣
∣
∣

Jγ
uh

= Jγ,Ωe,in
uh

+ J
γ,Ωl,out
uh

∫

Ωe,in

ruh
dΩ +

∮

∂Ωe,in

Jγ,Ωe,in
uh

ds = 0,
(2.15)

and the functional FΩe(η) given by

FΩe,in
(η) =

∫

Ωe,in

ruh
· η dΩ +

∮

∂Ωe,in

Jγ,Ωe,in
uh

· η ds.

The second condition in (2.15) is the consistency condition on the data of the fol-
lowing local Neumann problem

∣
∣
∣
∣
∣

divC∇seΩe = ruh
in Ωe

C∇seΩe : n = Jγ,Ωe
uh

, on ∂Ωe.

which guarantees its well–posedness in [H1(Ωe)]
3.
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Different types of equilibrated element residual error estimates have been given
in literature. These include the techniques proposed by Ladevèze & Leguillon (1983),
Kelly (1984), the first version of the error estimate of Bank & Weiser (1985) and
the error estimate given in Ainsworth & Oden (1992), among others. These are
differentiated between each other, basically, by the assumption on the splitting of
the residual jump across the element boundaries.

A unifying theoretical framework for the equilibrated element residual error
estimators has been developed by Ainsworth & Oden (1993). The gist of their
analysis is a localization of the primal–hybrid variational formulation (Raviart &
Thomas, 1977) of the problem (2.5) that characterizes the discretization error. The
formulation is posed on the so–called broken Sobolev space V0(Th)

†† associated with
Th and it is obtained by relaxing the interelement continuity with the expense of
introducing Lagrangian multipliers µ = µ(v) ∈ M ⊂ V?

0 (Th). The latter are the lin-
ear and continuous functionals defined over V0(Th) and vanishing over V0 ⊂ V0(Th).
The elements of M permit the characterization of the interelement continuity of
elements v ∈ V0(Th). In this way, one can solve local problems which preserve the
type of bound.

The main result is

−1

2
|||e|||2 = inf

v∈V0(Th)
sup
µ∈M

L(v, µ) = sup
µ∈M

inf
v∈V0(Th)

L(v, µ) ≥ inf
v∈V0(Th)

L(v, µ) ∀µ ∈ M,

where L(v, µ) is the Lagrangian functional defined as follows

L(v,µ) =
∑

Ωe∈Th

JΩe(v) − µ? + µ

with

JΩe(v) =
1

2

∫

Ωe

C∇sv : ∇v dΩ −
∫

Ωe

b · v dΩ −
∫

∂Ωe∩∂Ωt

t · v ds+

+

∫

Ωe

C∇suh : ∇v dΩ +

∮

∂Ωe

g∂Ωe · v ds

and

µ?(v) =
∑

γ∈Eh,Ω

∫

γ

gγ · [v]γ ds. (2.16)

In equation (2.16), gγ is a smooth vector field associated with each γ ∈ Eh,Ω and
[v]γ is the jump of v ∈ V0(Th) across γ (see note ††). The particular choice of gγ

††The broken Sobolev space V0(Th) is the space of the functions v of class [H1(Ωe)]
3 over each

element Ωe ∈ Th which meet homogeneous essential boundary conditions on ∂Ωe ∩ ∂Ωd. As a

result, an element v ∈ V0(Th) may be discontinuous across γ ∈ Eh,Ω. If we let V0(Ωe) =
{

v ∈

[H1(Ωe)]
3
∣
∣v = 0 on ∂Ωe ∩ ∂Ωd

}

, it is V0(Th) =
∏

Ωe∈Th

V0(Ωe).
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determines the error estimation method. Once gγ has been chosen, the vector field
g∂Ωe is defined on ∂Ωe for each element Ωe ∈ Th such that

∑

Ωe∈Th

∮

∂Ωe

g∂Ωe · v ds =
∑

γ∈Eh,Ω

∫

γ

gγ · [v]γ ds.

By choosing µ = µ?, one obtains

|||e|||2 ≤ −2
∑

Ωe∈Th

inf
v∈V0(Ωe)

JΩe(v)

︸ ︷︷ ︸

η

(2.17)

where V0(Ωe) is the restriction of V0(Th) to Ωe (see note ††).
The inequality (2.17) gives the link of the error estimate η to the solution of

the following elemental primal problems

∣
∣
∣
∣
∣
∣

Find w ∈ V0(Ωe)

JΩe(w) = inf
v∈V0(Ωe)

JΩe(v).
(2.18)

On the other hand, the dual formulation of (2.18) delivers (Mikhlin, 1964; Ekeland
& Temam, 1976)

∣
∣
∣
∣
∣
∣
∣
∣
∣

Find p ∈ WΩe

GΩe(p) = sup
q∈WΩe

−1

2

∫

Ωe

q : q dΩ

︸ ︷︷ ︸

GΩe (q)

,

where WΩe is the set of the stress tensors q solution of the following problem over
Ωe ∣

∣
∣
∣
∣

div q = ruh
in Ωe

q : n = g∂Ωe , on ∂Ωe.

This set is not empty if the following condition is satisfied

∫

Ωe

ruh
dΩ +

∮

∂Ωe

g∂Ωe ds = 0, (2.19)

which is the equilibration condition. Since it is

inf
v∈V0(Ωe)

JΩe(v) = sup
q∈WΩe

GΩe(q)

then it follows

|||e|||2 ≤ −2
∑

Ωe∈Th

sup
q∈WΩe

GΩe(q) ≤ −2
∑

Ωe∈Th

GΩe(q) ∀ q ∈ WΩe ,
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that is, a concrete realization of an upper bound for |||e||| depends on the definition
of g∂Ωe and on the choice of q ∈ WΩe .

The equilibration of the data (2.19), which is necessary for the model problem
under consideration, is desirable to realize also when low order terms are present in
the elliptic operator. In this case as the mesh size h → 0, these terms can become
preponderant and make the energy of the local solution blowing up. By imposing
the equilibration of the data also in this case, the error estimator becomes finite
(Ainsworth & Oden, 2000).

The error estimator introduced in Ladevèze & Leguillon (1983) can be casted
into the previous framework by choosing g∂Ωe to be Jγ

uh,av plus a suitable piecewise
linear vector field on ∂Ωe (Verfurth, 1999). However, this error estimate has been
obtained by starting from other considerations which lead to the class of errors in
the constitutive equations and they will be considered next. The previous analysis
provides also theoretical support to the heuristic error estimate introduced by Kelly
(1984) consisting in the solution of local complementary problems.

Finally, it is worth mentioning that Paraschivoiu et al. (1997) have devel-
oped an extension of this theory to the estimates of output of interest. Besides
the relaxation of the interelement continuity, an additional constraint is introduced
represented by the equilibrium equations over the broken Sobolev space, so that the
admissible set is constituted by the only solution of the problem (Patera & Peraire,
2001). The value of this generalization lies in the application to problems which can
be expressed in terms of minimization of a convex functional. An instance of such
extension to a hyperelastic model has been given in Bonet et al. (2002).

The error in the constitutive equation. The Prager-Synge theorem
The notion of error in the constitutive equations has been introduced for the first
time by Ladevèze in 1975 (Ladevèze, 1975; Ladèveze, 1995) by exploiting the convex
functional structure of the constitutive equations.

For linear elastic problems, this notion can be grasped quite easily. Let σex =
σex(x) and uex = uex(x) be the exact stress field and the exact displacement field,
respectively. This means that σex does satisfy the equilibrium equations, uex is
a kinematically admissible displacement field, that is, uex meets the internal and
external compatibility conditions and finally, uex and σex are related to each other
by the constitutive equation

σex − C∇suex = 0. (2.20)

Consider now a kinematically admissible displacement field uad = uad(x). The
energy norm of the error associated with uad = uad(x) is defined as

|||uad − uex||| =

(∫

Ω

[σex − C∇suad] : C
−1[σex − C∇suad] dΩ

) 1
2

(2.21)

Rigorous upper bounds for (2.21) are obtained as

η(uad,σad) =

(∫

Ω

[σad − C∇suad] : C
−1[σad − C∇suad] dΩ

) 1
2

(2.22)
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where σad = σad(x) is any statically admissible stress field, that is, a stress tensor
field that satisfies the equilibrium equation. Note that the pair (σad, uad) meets
also the condition

∫

Ω

(σex − σad) : (∇suex −∇suad)dΩ = 0, (2.23)

which follows, by standard arguments, from the principle of the virtual work.
Equation (2.22) is a measure of the extent to which the pair (σad,uad) fails to

satisfy the constitutive equation (2.20) and is obtained by reformulating equation
(2.20) into an equivalent form which uses the convex free elastic potential and its
Legendre transform, given by the complementary potential.

The validity of the bound

∣
∣
∣
∣
∣

Given uad

|||eex||| ≤ η(uad,σad), ∀σad

(2.24)

is a simple consequence of the Prager–Synge’s theorem (Prager & Synge, 1947) which
states the orthogonality between the fields σex −C∇suad and σad −σex. This reads
as

∫

Ω

[σad − C∇suad] : C
−1[σad − C∇suad] dΩ =

=

∫

Ω

[σex − C∇suad] : C
−1[σex − C∇suad] dΩ + (2.25)

+

∫

Ω

[σad − C∇suex] : C
−1[σad − C∇suex] dΩ.

Proof. In the case of linear elasticity, by accounting for the equivalence

σex − C(∇suex) = 0 ⇔ 1

2
σex : C

−1σex +
1

2
∇suex : C∇suex − σex : ∇suex = 0

it is an easy matter to show the validity of the following equality

1

2
σad : C

−1σad +
1

2
∇suad : C∇suad − σad : ∇suad =

=
1

2
σad : C

−1σad +
1

2
∇suex : C∇suex − σad : ∇suex +

+
1

2
σex : C

−1σex +
1

2
∇suad : C∇suad − σex : ∇suad +

− (σex − σad) : (∇suex −∇suad), (2.26)

so that by integrating both sides of equation (2.26) and accounting for (2.23), equa-
tion (2.25) follows.

In the case of conforming finite element displacement approximations, one
assumes uad = uh so that the actual realization of an upper bound η for the energy
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norm of the error |||eex||| resolves in the definition of a statically admissible stress
field σad. However, for the efficiency of η the definition of σad must be linked
with the finite element solution σh = C∇suh. This is realized with the so–called
prolongation condition introduced by Ladevèze & Leguillon (1983). Such condition
is a localization at each element Ωe ∈ Th of the Galerkin orthogonality (2.9) which
holds for the global residual Ruh

. The prolongation condition distinguishes the
statically admissible stress fields σad which satisfy the following equation (2.27) for
every shape function Ni and for all the elements Ωe ∈ Th,

∫

Ωe

(

σad − C∇suh

)

: ∇Ni dΩ = 0. (2.27)

where Ni stands for the vector of the shape functions associated with the node i.
Condition (2.27), finally, corresponds to making an assumption on the splitting of
the residual jump Jγ

uh
across the interelement boundaries and σad is obtained as

solution of the following local problem stated for each element Ωe

∣
∣
∣
∣

div σad + b = 0
σad : n = Jγ,Ωe

uh
,

where Jγ,Ωe
uh

is the part of the jump Jγ
uh

across γ ∈ ∂Ωe which is assigned to Ωe.
Error indicators are obtained simply by the localization of the integral (2.22)

as

η(uad,σad) =

(
∑

Ωe∈Th

η2
e

) 1
2

where

η2
e =

∫

Ωe

[σad − C∇suad] : C
−1[σad − C∇suad] dΩ

The proof of (2.24) has large validity so that the error in the constitutive
equations has also been applied to 2D and 3D elasticity by Ladevèze et al. (1991)
and Coorevits et al. (1998), respectively; incompressible elasticity by Gastine et al.
(1992) and to anisotropic meshes in Ladèveze (1994) and Ladevèze & Rougeot
(1997). In each of these problems, the crunch of the estimation technique was
always the definition of the equilibrating element tractions recovered by the finite
element solution. A general procedure for such construction in the case of 2D finite
element models has been developed in Ladevèze & Maunder (1996).

As we have mentioned earlier, local equilibrium problems with repartition of
the residual jump have been proposed on heuristic basis also by Kelly (1984). It
can be noted that the repartition that Kelly assumes in 1D corresponds to the
prolongation condition introduced in Ladevèze & Leguillon (1983).

The concept of using two approximate solutions to build estimates of the error
had been put forward also by Synge (1957) in establishing the hypercicle method. By
using two approximate solutions located in spaces intersecting at the exact solution
Synge builds estimates of solutions of the torsion problem.
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We conclude this section by mentioning the work of Fraeijs de Veubeke (1965)
that can be cast within the previous framework. Fraeijs de Veubeke provides esti-
mates of the energy norm of the exact solution |||uex||| starting from the two-sided
bounds for the exact free elastic energy in terms of the total elastic energy and the
total complementary elastic energy. Let

J (uad) =
1

2

∫

Ω

C∇suad : ∇uad dΩ −
∫

Ω

b · uad dΩ −
∫

∂Ωt

t · uad ds

be the total elastic energy defined over the affine space of the kinematically admis-
sible displacement fields and

G(σad) = −1

2

∫

Ω

σad : C
−1σad dΩ

the total complementary elastic energy defined over the affine space of the statically
admissible stress fields. It is (Mikhlin, 1964)

∀uad, J (uad) ≥ J (uex) = G(σex)
︸ ︷︷ ︸

− 1
2
|||uex|||2

≥ G(σad), ∀σad.

Thus, estimates of the energy norm of the exact solution |||uex||| were obtained as

η(uad,σad) =
√

−2G(σad) + 2J (uad)

This procedure, however, failed to gain popularity being based on the global solution
of the dual finite element method for the model under consideration, and also because
the estimate cannot be expressed in terms of the contributions from each element,
necessary for the optimization of the finite element meshes.

2.2.2 Recovery based error estimators

The recovery based error estimators represent certainly the class of error estimates
that has met a big success in the engineering community for its relatively simple
implementation. They were first introduced by Zienkiewicz & Zhu (1987) and since
then many error estimators have been developed which employ the main idea. This
relies on the following fact. The energy norm of the error, given by equation (2.3),
can also be re–written as follows

|||e||| =

(∫

Ω

(
σex − C∇suh

)
: C

−1
(
σex − C∇suh

)
dΩ

) 1
2

, (2.28)

where the exact stress field σex is unknown. Therefore, estimates to |||e||| are
obtained by assuming in place of σex in (2.28) approximations σ? recovered by
suitable postprocessing of the finite element solution σh = C∇suh, that is

|||e||| ≈ η =

(∫

Ω

(
σ? − C∇suh

)
: C

−1
(
σ? − C∇suh

)
dΩ

) 1
2

.
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The quality and reliability of this type of error estimator is however dependent on
the accuracy of the recovered solution. In general, it can be said that if σ? is such
that
∫

Ω

(
σex − σ?

)
: C

−1
(
σex − σ?

)
dΩ �

∫

Ω

(
σ? − C∇suh

)
: C

−1
(
σ? − C∇suh

)
dΩ

then
∫

Ω

(
σ?−C∇suh

)
: C

−1
(
σ?−C∇suh

)
dΩ ≈

∫

Ω

(
σex−C∇suh

)
: C

−1
(
σex−C∇suh

)
dΩ.

and one can define

η =

(∫

Ω

(
σ? − C∇suh

)
: C

−1
(
σ? − C∇suh

)
dΩ

) 1
2

as an a posteriori error estimator (with respect to the energy norm).
The procedures to build σ? are, generally, referred to as the stress recovery

or derivative recovery techniques. The definition of these methods finds their mo-
tivation in the observation that, under some conditions on the domain, mesh and
regularity of the solution, there exist certain points of the domain where the deriva-
tives of the finite element solution, C∇suh, which are usually one order lower than
that of the finite element solution itself uh, have superior accuracy (Barlow, 1976).
This phenomenon is known as superconvergence. If superconvergent derivatives can
be recovered by a particular post–processing method, an asymptotically exact error
estimator is then obtained (Ainsworth & Oden, 2000).

The recovery technique given initially in Zienkiewicz & Zhu (1987) assumes
σ? interpolated by the same functions as the displacements, i.e.

σ? = Nσ̄? (2.29)

where σ̄? are the nodal values of the continuous field σ?. The unknowns σ̄?, in turn,
are obtained by imposing that σ? −C∇suh is orthogonal to the space described by
the shape functions N, that is,

∫

Ω

(
σ? − C∇suh

)
: N dΩ = 0.

The Zienkiewicz–Zhu (Z2) error estimator, whose corresponding error indica-
tors are obtained simply by localization of the integral, was analysed in Ainsworth
et al. (1989). It was found that while the estimator performs quite well for linear
triangular and quadratic quadrilateral elements, it is not necessarily asymptotically
exact. This property is shown to hold in the case of smooth solutions and parallel
meshes by Babuska & Rodriguez (1993) and in Verfurth (1996) who refer to the
analysis carried out by Rodriguez (1994). For other types of elements, the Z2–
method was often found to behave poorly with the effectivity index converging to
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zero in some cases. In others, the error indicators were misleading in steering the dis-
cretization process (Strouboulis & Haque, 1992). For this reason, Zhu & Zienkiewicz
(1990) introduced first for one dimensional problems a new stress recovery proce-
dure, termed as superconvergent patch recovery, by means of which superconvergent
derivatives of the finite element solution are determined everywhere in the domain.
The recovery procedure was then developed for 2D problems in Zienkiewicz & Zhu
(1992a) and applied to error estimation in Zienkiewicz & Zhu (1992b). The contin-
uous stress field σ? is, as usual, assumed to be given by equation (2.29). The nodal
values σ̄? are obtained by considering a continuous polynomial expansion on an el-
ement patch surrounding the nodes where the recovery is desired. This expansion
is made to fit locally the superconvergent points, called also sampling points, in a
least–squares manner or simply be an L2–projection of the finite element deriva-
tives. For the least–squares fitting, the superconvergent recovery is observed by the
numerical test; for the local L2–projection fitting, a considerable improvement for
the nodal values is achieved.

Improvements of the method were contributed by Wiberg & Abdulwahab
(1993) that include the governing equilibrium equation on the recovered derivatives.
As in Zienkiewicz & Zhu (1992a), these are assumed to be interpolated by the same
shape functions as the finite element displacement field, that is, σ? is assumed of the
form (2.29). The nodal values of the recovered stress field are also here obtained by
assuming for the stresses a polynomial expansion over the patch of elements around
the given node. The coefficients of this expansion are then computed by minimizing,
in a least–square sense, the residual of the stresses at the superconvergent points and
the weighted residual in the equilibrium equation over the local patch of elements.
This recovery techniques was successively improved by Wiberg et al. (1994) for the
recovery of derivatives near the boundaries where either tractions or displacements
are prescribed. This was obtained by including seemingly a weighted residual error
at the boundary points in the patch recovery and a pronounced improvement in the
post processed gradients of the finite element solution was finally observed.

A complete analysis of the several recovery based error estimators in terms of
the operator that defines the improved stress as function of the consistent derivatives
of the finite element solution can be found in Ainsworth & Oden (2000). Carstensen
& Funken (2000) analyze, on the other hand, their robustness with respect to vio-
lated (local) symmetry of meshes or superconvergence and with respect to incom-
pressible locking.

These error estimators, however, are justified to varying extent by supercon-
vergence properties which are known to hold only in special cases. In Babuska
& Strouboulis (2001), therefore, a new definition of superconvergence - the η%–
superconvergence - is considered which generalizes the classical idea of superconver-
gence to general meshes. By means of this property one can choose the best position
of the sampling points when properties of superconvergence do not hold.

Remark 2.1. If the smoothed stress field σ? is chosen as an equilibrated stress field
σad, for instance, with the criteria given in the previous section, then one retrieves
the equilibrated element residual error estimates.
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A numerical methodology which determines the quality of a posteriori error
estimators has been set up by Babuska et al. (1994b) and Babuska et al. (1994a).
The authors observe that the use of general benchmarks to validate a posteriori
error estimates can lead to wrong conclusions if they are not properly chosen to
isolate the basic factors which influence the performance of the estimator. As a
result, an objective and standardized means to assess the robustness of an estimator
that exercises all the feature of the particular estimator is given. However, this
methodology presents its own limitations. The procedure allows the evaluation of
the extreme bounds of the effectivity indices for the estimator when certain effects
such as the influence of the singularities, the effect due to the boundary of the
domain and mesh grading have been isolated. Moreover, the effectivity indices are
those that would be obtained in the asymptotic limit when the mesh size approaches
to zero. The preasymptotic behaviour of the estimators might well lead to rather
different conclusions concerning the suitability of a particular estimator. Thus, this
methodology must be seen not as a means to justify an estimator, but rather as a
minimal criterion the estimator must meet. For the details of the procedure and
its motivating ideas we refer to the above works and to Ainsworth & Oden (2000).
The main general conclusions of the studies carried out in Babuska et al. (1994b)
and Babuska et al. (1994a) on the quality of estimators for piecewise affine finite
approximations on triangular elements can be summarized as follows

• The performance of an estimator depends on the class of meshes, solutions
and materials of interest.

• Among the residual estimators tested by the above authors, the implicit el-
ement residual estimator with equilibration was the most robust, namely it
gives good results for several mesh types, for highly orthotropic materials and
arbitrary grid material orientations. In particular, the equilibration proposed
in Ladevèze & Leguillon (1983) was recommended.

• The Superconvergence patch recovery error estimator developed in Zienkiewicz
& Zhu (1992b) gives good results for the class of smooth solutions approxi-
mated on patchwise uniform grids of linear and quadratic elements.

• Asymptotic exactness for an estimator can occur for special uniform grids only
and cannot give a measure of quality for the estimator for the general meshes
employed in engineering computations.

• The quality of the analysed error estimators tends to deteriorate on anisotropic
meshes.

The value of the methodology lies also in the fact that it requires only the solution
of small problems in the region of interest; it is inexpensive and it can be used to
check the quality of any new estimator even if it is only available as a black–box
computer subroutine.
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2.3 Nonlinear problems

Unlike the linear problems analysed in the previous section, where a certain maturity
has been reached in the comprehension of the mechanisms of propagation of the
error, in the case of nonlinear problems, and in particular for those dependent also
on the time, the theory of error estimation can be considered still in its infancy.
This is reflected in the paucity of studies dedicated to the matter and of originality
of the approaches, which usually try to adapt ideas developed for linear problems.
Although it is difficult to make a classification of the techniques of estimation, for
the nonlinearities are involved in a quite different ways and for the different nature
in the approximation of the time and space variable, it may be useful to distinguish
the several contributions as follows (Gallimard, 1994):

• Error estimators for problems where the time variable does not appear;

• Error estimators which attempt to estimate also the effects of the time dis-
cretization;

• Error in the constitutive equations;

• Methods based on heuristic considerations and direct to the development of
error indicators.

For each of this class, the more meaningful works will be outlined, especially in
relation to plasticity.

2.3.1 Nonlinear incremental problem

An approach to a theoretically justified a posteriori error estimate for the finite
element approximation of plasticity problems was given in Johnson & Hansbo (1992).
These authors analysed the regularized version of the Hencky problem in small strain
perfect plasticity with Von Mises yield criterion given by

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

div σµ = b in Ω

uµ = 0 on ∂Ω

C
−1σµ +

1

µ
(σµ − Pσµ) = ∇suµ in Ω,

(2.30)

where uµ and σµ denote the solutions of the regularized problem. In equation
(2.30) µ represents the regularization parameter, whereas Pτ is the projection of
the second order stress tensor τ ∈ S onto the convex elastic domain

E =
{
σ ∈ S :

∣
∣σD

∣
∣− σy ≤ 0

}
.

Here S is the space of the second order symetric stress tensors, σy is the first yield

stress, σD = σ − 1
3
Tr[σ]I is the deviator tensor of σ and |σ| = 〈σ, σ〉 1

2 , with
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〈σ, τ 〉 = σ : C
−1τ . The projection Pτ of τ onto E is defined as the solution of the

following minimization problem

Pτ = argmin
σ∈E

|σ − τ | (2.31)

which is explicitly given by (Rannacher & Suttmeier, 1998)

Pτ =







τ if
∣
∣τD

∣
∣ ≤ σy

τD

|τD|σy +
1

3
Tr[τ ]I if

∣
∣τD

∣
∣ > σy.

(2.32)

The projection Pτ ∈ E is also solution of the following variational inequality

〈τ − Pτ , σ − Pτ 〉 ≤ 0, ∀σ ∈ E,

therefore, given τ1 ∈ S, Pτ1 ∈ E is such that

〈τ1 − Pτ1, σ − Pτ1〉 ≤ 0, ∀σ ∈ E, (2.33)

and likewise, given τ2 ∈ S, Pτ2 ∈ E is such that

〈τ2 − Pτ2, σ − Pτ2〉 ≤ 0, ∀σ ∈ E. (2.34)

Set σ = Pτ2 ∈ E in (2.33) and σ = Pτ1 ∈ E in (2.34) and sum up both the sides,
one obtains

〈τ1 − τ2, Pτ1 − Pτ2〉 ≥ 〈Pτ1 − Pτ2, Pτ1 − Pτ2〉 ≥ 0. (2.35)

That is, if we denote with P also the operator

P : τ ∈ S → Pτ defined by (2.31),

equation (2.35) shows that P is a monotone operator† and is nonexpansive, i.e.
|τ1 − τ2| ≥ |Pτ1 − Pτ2|.

†Let V and V? be two linear topological spaces placed in duality by the separating bilinear form
〈·, ·〉V?,V . Denote with 2V

?

the space of subsets of V?. Let T : V → 2V
?

. We set D(T ) =
{
v ∈

V : T (v) 6= ∅
}

⊆ V , i.e. the effective domain of T ; R(T ) =
{
w ∈ T (v) ∈ 2V

?

: v ∈ D(T )
}

∈ 2V
?

,

i.e. the range of T ; and G(T ) =
{

(v,w) ∈ V × V?
∣
∣
∣v ∈ V , w ∈ V?, w ∈ T (v)

}

∈ V × V? i.e.

the graph of T . The operator T is said to be monotone if 〈w − w1,v − v1〉V?,V ≥ 0 ∀v, v1 ∈ V ,
∀w ∈ T (v) ⊂ V? ∀w1 ∈ T (v1) ⊂ V?. The operator T is said to be cyclically monotone if
〈w0, v1−v0〉+ . . .+〈wn, v0−vn〉 ≤ 0 whenever wi ∈ T (vi) for i = 0, 1, 2, . . . , n (n arbitrary). The
operator T is said to be maximal monotone if and only if ∀ (v, w) ∈ G(T ), 〈w−w1,v−v1〉V?,V ≥ 0
implies v1 ∈ D(T ) and w1 ∈ T (v1). If T is a maximal monotone operator, for any v ∈ D(T ),
the image T (v) is a closed convex subset of

(
V?, σ(V?, V)

)
where σ(V?, V) denotes the weak

topology on V? generated by V . Let H be a Hilbert space and T : H → H. The following three
propositions are equivalent: (i) T is maximal monotone; (ii) T is monotone and R(I + T ) = H;
(iii) ∀λ > 0, (I + λT )−1 is a nonexpansive single valued map defined everywhere on H. If T is a
maximal monotone operator, the operator Jλ = (I + λT )−1 is referred to as the resolvent of T ,
whereas the operator 1

λ
(I − Jλ) is called the Yosida approximation of T (Brezis, 1986; Pascali &

Sburlan, 1978).
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Equation (2.30) describes also the physical model of viscoplasticity which is
well–posed in the usual Sobolev spaces (Duvaut & Lions, 1976). For the original
model of perfect plasticity, on contrary, the displacements must be sought in the
more technical space of the bounded deformations (Temam, 1985) if one requires to
guarantee their existence.

Let the complementary energy norm of the error on the stresses be defined as

‖σµ − σh
µ‖2

E

def
=

∫

Ω

∣
∣σµ − σh

µ

∣
∣
2

dΩ,

where σh
µ denotes the consistent finite element stress tensor obtained from the dis-

placement finite element approximation of (2.30). From the monotony of the oper-
ator I − P it follows

‖σµ − σh
µ‖2

E ≤ Rσh
µ
(e)

where e = uµ − uµ,h and the functional Rσh
µ
(η) is the residual produced by σh

µ in
the equilibrium equations, which is given by

Rσh
µ
(η) =

∫

Ω

b · η dΩ −
∫

Ω

σh
µ : ∇η dΩ.

Further to a heuristic argument, Johnson & Hansbo (1992) distinguish two
contributions into Rσh

µ
. One contribution comes from the part Ωel of the domain

Ω which remains elastic both in the continuous and in the finite element model,
whereas the other contribution comes from the complementary part Ωpl = Ω − Ωel.
As a result, they finally propose the following estimate

‖σµ − σh
µ‖E ≤

(
2∑

j=1

‖hCi
jRj(σ

h
µ)‖2

L2(Ωel) + Cs

2∑

j=1

‖hCi
jRj(σ

h
µ)‖2

L∞(Ωpl)

)1
2

(2.36)

where

R1(σ
h
µ) = rσh

µ
= div σh

µ + b on Ωe ∈ Th

R2(σ
h
µ) = max

γ⊂∂Ωe

sup
γ

1

2

‖Jγ

σh
µ
‖L2(γ)

h
on Ωe ∈ Th

J
γ

σh
µ

= [σh
µ : n]γ on γ ∈ Eh,Ω

Cs = ‖∇suµ‖[L1(Ω)]3×3 + ‖∇suµ,h‖[L1(Ω)]3×3

and Ci
j are the usual interpolation constants.
The two contributions to the error estimate in (2.36) reflect the type of de-

pendence on the mesh size present in the a priori error estimate found by Johnson
(1976b) for finite element approximation of this problem. Therein, the estimate has
the following structure

‖σµ − σh
µ‖E ≤ O(h) +O(

√
h)
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with the O(h) and O(
√
h)–terms related to Ωel and Ωpl, respectively. However, since

the a priori error estimate is sub–optimal, one expects the mesh will be more refined
in the plastic part Ωpl, where the stresses are suspected to be rather smooth (Fuchs
& Seregin, 2000).

Furthermore, the estimate (2.36) is not a full a posteriori error estimate, since
Ωel and Cs depend on uµ. Therefore, the authors suggest to replace uµ with uµ,h

for the computation of Cs and assume for Ωel only the part of the discrete model
which remains elastic. This is quite arbitrary, for it implies that the plastification
zone is already correctly captured on the current mesh.

The analysis of the Hencky problem in small strain perfect plasticity with Von
Mises yield criterion has been considered also by Rannacher & Suttmeier (1998). As
a special case of the control of output of interest, they obtain an a posteriori error
estimate of the energy norm of the error on the stresses via duality argument applied
to a linearized dual problem. Starting from the non–linear variational equations
which describe the regularized version of the Hencky problem and its corresponding
finite element approximation, they obtain the non–linear Galerkin orthogonality
relation

∫

Ω

[

P (C∇suµ) − P (C∇suµ,h)
]

: ∇ηh dΩ = (2.37)

=

∫ 1

0

∫

Ω

P ′(∇(suµ + (1 − s)uµ,h))∇(uµ − uµ,h) : ∇ηh dΩ ds = 0 ∀ηh ∈ Vh

where the mean integral theorem has been invoked and P ′ is the tangent stiffness
matrix sampled at ∇(suµ+(1−s)uµ,h) with s ∈]0, 1[. By computing the linearization
(2.37) at uµ,h, they consider the solution of the following linear dual problem

∣
∣
∣
∣
∣
∣
∣

Find ϕ ∈ V
∫ 1

0

∫

Ω

P ′(∇uµ,h)∇η : ∇ϕ dΩ ds = J (η) ∀η ∈ V,

where J (η) is the output functional of interest which is taken equal to

JE(η) = |||e|||−1

∫

Ω

C∇sη : ∇e dΩ

in the case of control of the error in energy norm ||| • ||| given by equation (2.3).
Following standard arguments, finally, they obtain

|||uµ − uµ,h||| ≤
∑

Ωe∈Th

ωΩeρΩe

with the local residuals defined by

ρΩe = hΩe‖rσh
µ
‖[L2(Ωe)]3 + h

1
2
Ωe

∑

γ⊂∂Ωe

‖Jγ

σh
µ
‖[L2(∂Ωe)]3
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whereas the weights are approximated as in the linear case.
Since this estimation technique involves a linearization, the resulting estimate

will be valid only asymptotically, that is for uµ,h close to uµ. Moreover, one is
required to provide an approximation for e in order to define the forcing JE(η) in
the dual problem, which can provoke a deterioration of the quality of the bound.

Duality has also been employed to derive a posteriori error estimates for non-
linear variational problems. The work of Repin & Xanthis (1996) represents an
important contribution in this sense. The authors, indeed, develop a rigorous math-
ematical analysis based on duality theory of the calculus of variations which leads
to the concept of duality error estimators for approximations to nonlinear problems
defined by a special class of convex functionals. In particular, the theory is presented
for the Nadai deformation theory (Nadai, 1937) of hardening elasto–plastic material
which gives rise to two variational problems: the primal for displacements and the
dual for the stresses,

∀τ ∈ ΣEQ, G(τ ) ≤ G(σex) = sup
τ∈ΣEQ

G(τ ) = J (u) = inf
v∈V

J (v) ≤ J (v), ∀v ∈ V

where J (v) corresponds to the potential energy of the elasto–plastic body defined
over the affine space V of the kinematically admissible displacement fields and G(τ )
corresponds to the complementary energy of the elasto–plastic body defined over the
affine space ΣEQ of the statically admissible stress tensor fields. For the definition
of the functionals J (v) and G(τ ) associated with the material model under consid-
eration we refer to Repin & Xanthis (1996). Likewise Fraeijs de Veubeke (1965),
Repin & Xanthis (1996) assume the difference E(v, τ ) = J (v) − G(τ ) as measure
of the energy norm of the approximation error. However, due to the computational
cost and difficulty for building equilibrated stress fields τ ∈ ΣEQ, the functional
E(v, τ ) is extended over the whole space Σ of the stress tensors. As a result, Repin
& Xanthis (1996) obtain the following estimate

1

2
|||v − u|||2 ≤ E(v, τ ) = EΛ(v, τ ) + Eeq(τ ).

For the expressions of EΛ(v, τ ) and Eeq we refer again to Repin & Xanthis (1996).
Here, in relation to further developments we note that the analysis of Repin &
Xanthis (1996) shows that EΛ(v, τ ) = 0 if and only if the constitutive equation is
satisfied, whereas Eeq(τ ) = 0 if and only if τ satisfies the equilibrium equations. For
this reason, EΛ(v, τ ) measures the error in the constitutive law and Eeq(τ ) measures
the error in the equilibrium equations. The estimate, which is an extension of the
one proposed by Ladevèze & Leguillon (1983) for linear problems, can, therefore,
be applied by using the known approximate solution v of the primal problem and
the corresponding stress tensor obtained by the constitutive relation, even though
this will not meet the equilibrium equations. However, the actual computation of
the estimate, which is developed for any conforming approximation, not necessarily
meeting an orthogonality condition, requires the solution of a quadratic minimiza-
tion problem posed over an infinite dimensional which renders its practical applica-
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tion rather difficult. Furthermore, the estimate does not distinguish the elemental
contributions, which form the basis of any adaptive process.

An a posteriori error estimate for the primal variational formulation of elasto-
plasticity with linear hardening given in Han & Reddy (1999) is provided by Al-
berty et al. (1999). The a posteriori error estimate refers to the finite element
approximation of displacement and plastic strain field in the nonlinear incremental
boundary value problem obtained within one time step of the backward Euler. With
this formulation, the continuous formulation and finite element discretization of the
nonlinear incremental boundary value problem can equivalently be expressed as min-
imization of a Lipschitz-continuous non–smooth convex functionals. By exploiting
this property Alberty et al. (1999) obtain the following estimate

‖σ − σh‖2
[L2(Ω)]3×3 + ‖εp − ε

p
h‖2

[L2(Ω)]3×3 + ‖∇su −∇suh‖2
[L2(Ω)]3×3 ≤ C

∑

Ωe∈Th

η2
Ωe
,

where C is a constant depending on the hardening modulus, the discrete stress field
σh is

σh = C(∇suh − ε
p
h),

whereas the elemental error indicators η2
Ωe

are given by

η2
Ωe

= h2
Ωe
‖rσh‖2

[L2(Ωe)]3 +
∑

γ⊂∂Ωe

hγ‖Jγ

σh‖2
[L2(γ)]3

which are the same as in pure elasticity. This circumstance is motivated by the
observation that the evolution law in the plastic material law (within one time
step) is satisfied exactly on each element whence the material law has a vanishing
residual. Thus, excluding the error accumulation for progressing time–steps, the
only remaining residuals are those produced in the discrete equilibrium conditions.

2.3.2 Analysis of the time discretization error

The error estimates presented in the previous section, though based on solid theoret-
ical background, by definition do not account for the effects of time discretization.
These estimates, indeed, have been developed by looking at the error associated
with the finite element approximation of the non–linear incremental boundary value
problem obtained from a one–time step discretization of the initial boundary value
problem. Therefore, the error estimate cannot take into account the error deriving
from the replacement of the rate quantities appearing in the initial boundary value
problem with the difference quotients. It is, indeed, this replacement that produces
an error, called the time discretization error, which in certain cases may not be
negligible.

An inherent difficulty in obtaining a complete a posteriori error estimation for
the solution of the fully discrete scheme is due to the different nature of discretiza-
tion: finite difference–type in time and finite element–type in space. With a finite
element approximation–type, the error can be linked to the residual associated with
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the approximation. This is obtained simply by inserting the approximate solution
into the exact equation. With a finite difference approximation–type, on the other
hand, it seems impossible to insert the discrete solution into the exact equation and
compute the residual. In this case, indeed, the error estimates developed for finite
difference approximations of ordinary differential equations are traditionally based
on predictor–corrector algorithms. In these algorithms the difference in solutions
obtained by schemes with different orders of truncation error is used as rough esti-
mates of the error. This estimate is in turn used to adjust the time step (Gear, 1971;
Reiher, 1987; Abbo & Sloan, 1996). An alternative is the estimate proposed by No-
chetto et al. (2000) that develop a posteriori error estimates for the backward Euler
approximations of a special class of abstract evolution equations in Hilbert space.
In their method it is the accuracy of time interpolant functions of the nodal values,
such as continuous piecewise linear or discontinuous piecewise constant functions,
to be assessed.

This unsatisfactory state of affair, however, does already become clear in the
development of a posteriori error estimates for parabolic equations which represent
the simplest class of evolution problems. For this reason, it seems appropriate to
first recall briefly some works for parabolic problems. This is considered useful in
relation to the evolution of elastoplastic systems.

Eriksson & Johnson (1991) develop an adaptive algorithm for the heat equation
based on a posteriori error estimates of approximations obtained by the discontinu-
ous Galerkin method which is based on space–time discretization. In the context of
the error analysis, one of the advantages of using the discontinuous Galerkin method
is the availability of a unique global variational structure which provides directly the
approximation in space and in time. In this manner, one can represent the error
in terms of the residual produced by the approximation in the global variational
formulation of the problem which will, therefore, account for the discretization ef-
fects in space and time (Estep et al., 2000). The use then of a space–time duality
argument allows one to realize the control of the quantity of interest. The main
idea of this technique, which extends to time dependent problems the procedure
developed for elliptic problems, can be comprehended by considering the following
abstract evolution equation in the Hilbert space H (Nochetto et al., 2000)

∣
∣
∣
∣
∣
∣
∣
∣

Find u : t ∈ [0, T ] → H
u̇+ F(u) = 0

u(t = 0) = u0

(2.38)

where F : H → H is a given (nonlinear) operator of H in H which is Fréchet–
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differentiable in H ‡. Let R be the residual

R = −U̇ −F(U), (2.39)

where U is the approximate solution. By adding (2.38) and (2.39), we obtain the
error equation for e = u− U

ė+ Ue = R (2.40)

where§

U def
=

∫ 1

0

DF [su+ (1 − s)U ]ds.

and DF(ū) is the Fréchet derivative of F at ū ∈ H. Multiplying (2.40) by ϕ ∈
C1([0, T ];H) and integrating by parts over [0, T ] delivers the error representation
formula

〈e(T ), ϕ(T )〉 = 〈e(0), ϕ(0)〉 +

∫ T

0

〈e, ϕ̇− U?ϕ〉dt+

∫ T

0

〈R, ϕ〉dt (2.41)

where U? is the adjoint of U . The a posteriori error estimate follows then by selecting
ϕ in (2.41) as the solution of the backward dual problem

∣
∣
∣
∣
∣
∣
∣
∣

Find ϕ(t) : t ∈ [0, T ] → H
ϕ̇− U?ϕ = 0

ϕ(T ) = e(T )

and using strong stability properties of ϕ, such as bound for ϕ̇, for evaluating the
initial error and the residual terms.

The implementation of these ideas to the discontinuous Galerkin finite ele-
ment method dG(0)cG(1), which combines continuous piecewise linear polynomial
approximation in space with discontinuous piecewise constant polynomial approxi-
mation in time (which then reduces to the backward Euler with the rectangle rule
applied to the integrals) delivers the estimate (Eriksson et al., 1996)

‖u(tN) − UN‖L2(Ω) ≤ LNCi max
1≤n≤N

(

‖h2
nR2(U)‖In + ‖h2

nf‖In +

(2.42)

+ ‖[Un−1]‖L2(Ω) + ‖knf‖In + ‖h
2
n

kn

[Un−1]‖?
L2(Ω)

)

‡Let X and Y be Banach spaces and let x0 be a point in X . Let F be a mappimg from a
neighborhood Ix0

of x0 into Y. Then F is called differentiable at x0 if there exists a linear and
continuous operator A with the property that F(x) = F(x0) + A(x − x0) + G(x), ∀x ∈ Ix0

and

lim
x→x0

‖G(x)‖Y

‖x−x0‖X
= 0. If such an A exists, we call it Fréchet derivative of F at x0 and is isually

denoted with DF [x0] (Renardy & Rogers, 1996).
§Since F is Fréchet differentiable, one can apply the chain rule d

ds
F(su+ (1− s)U) = DF [su+

(1 − s)U ](u − U) and integrating both sides from 0 to 1 one finally obtains F(u) − F(U) =
∫ 1

0 DF [su+ (1 − s)U ]ds (u− U).
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where

‖•‖In = max
tn−1≤t≤tn

‖•‖L2(Ω),

u(tN) = u(•, tN),

Ci and LN are constants depending on kn = tn − tn−1 and tn,

R2(U) = max
γ⊂∂Ωn

e

sup
γ

1

2

‖[∇U ]‖L2(γ)

hn

,

Ωn
e ∈ Thn , with the finite element partition Thn associated with In = [tn−1, tn],

hn meshsize of Thn ,

and the starred term is different from zero only in presence of change between non–
embedded finite element meshes. In equation (2.42) one can distinguish the terms
that measure the residual error of the space discretization from those that measure
the residual error of the time discretization. Among the latter, we consider further
the starred term. This can be interpreted as error of the initial data of the single
one step problem due to different interpolation assumption: in presence of non–
embedded finite element spaces, Vhn−1 6⊂ Vhn , the L2 projection of Un−1 ∈ Vhn−1

onto Vhn is different from Un−1.
Phase change phenomena represent a class of problems interesting to consider

for they share some common features with the evolution of an elastoplastic medium,
such as the presence of variational equations and differential inclusions in the gov-
erning equations. In the problem studied by Chen et al. (2000b), for example, we
have ∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

Find θ, χ

〈∂θ
∂t
, η〉 + 〈∂χ

∂t
, η〉 + 〈∇θ,∇η〉 = 〈f, η〉, ∀η

θ ∈ ε
∂χ

∂t
+ Λ(χ)

where ε is a small scalar parameter, θ stands for the temperature of a substance that
occupies the domain Ω and undergoes solidification, χ is the phase variable and Λ
is a multivalued operator given by the inverse of the sign function. The primary
variables θ and χ are approximated with continuous piecewise linear finite elements
in space and the backward Euler method is employed for the time discretization.

In the error analysis carried out by the same authors, time interpolation func-
tions of the nodal values of χ and θ, and also the constant interpolant function
θ̄(t) = θn, with tn−1 < t ≤ tn are employed in the definition of the error. Starting
from a representation of this error, the authors finally derive an estimate which is
expressed as sum of several contributions. These include the term associated with
the jump residual, the internal residual, the coarsening, the initial error, the time
residual, the quadrature and the error on the data.

The extension of the previous procedures to the control of the error in the dis-
placement formulation of an elastoplastic continuum is not straightforward. This is
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due mainly to two reasons. One is the high nonlinearity involved in the elastoplastic
behaviour while the other is the use of primary variables, such as displacements,
which do not appear in rate form in the formulation of the problem. Consequently,
studies on the global control of the error are rare in the current literature. Rannacher
& Suttmeier (1999) present a fairly complete analysis for the mixed–dual formulation
of the quasi–static Prandtl–Reuss model defined by the following equations

∣
∣
∣
∣
∣
∣
∣
∣

Find: σ ∈ ΠW,v = u̇ ∈ V
〈σ,∇ϕ〉 = 〈b,ϕ〉, ∀ϕ ∈ V
〈σ̇ − C∇sv,σ − τ 〉 ≥ 0, ∀τ ∈ ΠW

(2.43)

where V =
{
v ∈ [L2(Ω)]3 : v = 0 on ∂Ωd

}
and ΠW =

{
τ ∈ W : ‖τD‖ − σy ≤

0, a.e. in Ω
}
, with W = [L2(Ω)]3×3.

After performing time discretization with the backward Euler method, and
the introduction of the nonlinear operator P defined in (2.32), problem (2.43) is
transformed into the nonlinear variational equation

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Data: (σn−1,un−1) ∈ W × V
Find: (σn,un) ∈ W × V
〈σn − P [σn−1 + knC∇s(un − un−1)], τ 〉 + kn〈σn,∇ϕ〉 = 〈bn,ϕ〉,
∀(τ ,ϕ) ∈ W × V.

(2.44)

Equation (2.44) describes a material behaviour of Hencky–type in the case kn = 1,
σn−1 = 0 and un−1 = 0 which is discretized with standard finite elements in space
as follows
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Data: (σh
n−1,u

h
n−1) ∈ Wh × Vh

Find: (σh
n,u

h
n) ∈ Wh × Vh

〈σh
n − P [σh

n−1 + knC∇s(u
h
n − uh

n−1)], τ
h〉 + kn〈σh

n,∇ϕh〉 = 〈bn,ϕ
h〉,

∀(τ h,ϕh) ∈ Wh × Vh.

(2.45)

For the control of the global stress error with respect to the energy norm, ‖eσ‖E =
〈eσ,C

−1eσ〉, in order to account for effects of time and space discretization Ran-
nacher & Suttmeier (1999) consider the split of the total error into the three com-
ponents

σ(tn) − σh
n = σ(tn) − σn

︸ ︷︷ ︸

en,σ

+ σn − σ̃n
︸ ︷︷ ︸

ẽn,σ

+ σ̃n − σh
n

︸ ︷︷ ︸

eh
n,σ

(2.46)

where

• σ(t) is the exact solution of problem (2.45),

• σn is the solution of problem (2.44) with data σn−1 and un−1,
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• σ̃n is the solution of problem (2.44) but with data σh
n−1 and uh

n−1,

• σh
n is solution of problem (2.45),

thus

• en,σ is the error produced by time discretization only,

• ẽn,σ is the error due to change of data in the solution of (2.44),

• eh
n,σ is the error produced by space discretization only.

While for eh
n,σ Rannacher & Suttmeier (1999) provide an a posteriori estimate which

is the same as for the discretization error of the Hencky problem, for the other two
terms only a rough a priori estimate is given. In particular, for en,σ the following
bound is obtained

max
0≤n≤N+1

‖en,σ‖E ≤ ‖e0
σ‖E + T max

1≤n≤N+1

{
kn max

t∈[tn, tn+1]
‖σ̈‖E

}

which shows that the error due to the incremental loading process grows at most
linearly with time provided that the exact solution stayed bounded. As for the error
ẽn,σ related to the use of inexact starting values in each incremental loading step,
this depends on the stability properties of problem (2.44). Rannacher & Suttmeier
(1999) give the following estimate

max
1≤n≤N+1

‖ẽn,σ‖E ≤ ‖ẽ0
σ‖E + max

0≤n≤N

{
‖en,σ‖E

}

which assumes an unchanged propagation of the full size of the error of the data.
The error estimate is finally obtained by combining all the previous results.

Nevertheless, the adaptive algorithm given in Rannacher & Suttmeier (1999) is
based only on the estimate of the term eh

n,σ, for the effects of time discretization are
neglected.

The same authors set up also a theoretical framework for a posteriori error
analysis for the time discretization error based on duality. To this end, the solution
of (2.45) is seen as arising from the use of a space–time approximation which uses
discontinuous Galerkin method dG(0) for the time discretization and standard finite
element for the discretization in space. Further to a space–time duality argument
on the linearized equation that defines the error the following estimate is obtained

‖σ(T ) − σh
N+1‖E ≤

N+1∑

n=1

kn

∑

Ωn
e ∈Thn

h2
Ωe

{
(h2

Ωe
+ k2

n

4∑

i=1

ρ
n,i
Ωe
ω

n,i
Ωe

)
}

where the local residuals are given by

ρ
n,1
Ωe

= h−1
Ωe
k
− 1

2
n

∫ tn

tn−1

‖R1‖[L2(Ωe)]3 , dt, ρ
n,2
Ωe

= h
− 3

2
Ωe
k
− 1

2
n

∫ tn

tn−1

∑

γ⊂∂Ωn
e

‖Jγ

σh‖[L2(γ)]3dt,

ρ
n,3
Ωe

= h−1
Ωe
k
− 1

2
n

∫ tn

tn−1

‖rσh‖[L2(Ωe)]3dt, ρ
n,4
Ωe

= h−1
Ωe
k−1

n ‖C 1
2 [σh]n‖[L2(Ωe)]3×3 ,
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with

R1
def
= σ̇h +

1

µ
(σh − Pσh) −∇svh,

whereas the respective weights are obtained by the solution of the linear continuous
dual problem. Here, it is interesting to note that the term ρ

n,4
Ωe

reflects the low
order regularity of the time constant piecewise function due to the presence of the
discontinuity jump across the time instant tn.

A similar approach has also been adopted by Larsson et al. (2001) for the
control of quantity of interest in the space–time discretization of viscoplasticity.
Also here, the latter is realized with space–time finite elements that are based on the
use of the discontinuous Galerkin method for the time discretization and standard
finite elements for the space discretization. This formulation gives quite naturally
the variational setting for the analysis of the global error. Consequently, the general
principles of duality given at the beginning of this Section can be applied.

Both the theoretical analysis of Rannacher & Suttmeier (1999) and the study
of Larsson et al. (2001) share the same limits. These are inherent to the technique
of error estimation based on duality when it is applied to nonlinear problems. One
limit comes from the need of linearization of the problem that defines the error, so
that the eventual estimate has only an asymptotic character. Another one comes
from the need of solving exactly the continuous dual problem. Finally, the lack
of a sufficiently developed theory of problems of elasto–plasticity does not allow a
complete regularity study, which is very important in the analysis of the weights.
All this hampers the practical use of the method.

Remark 2.2. The discontinuous Galerkin method dG(0) applied to time discretiza-
tion is the backward Euler method with (•)−n = (•)+

n and the rectangle rule applied
to the integrals. This method, however, does not accommodate the case of using
different starting values, that is, (•)−n 6= (•)+

n . On the other hand, the use of the
discontinuous Galerkin method dG(1) in place of dG(0), though it has (•)−n 6= (•)+

n ,
would produce a different time scheme different from the backward Euler.

Following an heuristic argument based on the comparison of the Prandtl–Reuss
elastoplasticity with Hencky’s plasticity, Barthold et al. (1997, 1998) split the total
error into spatial and time discretization errors. The error associated with space
discretization is captured by three terms. The first term is related to the lack of
equilibrium and likewise in the work of Johnson & Hansbo (1992) this term is given
by

η2
eq =

∑

Ωe∈Th

{

C1h
2‖rσh‖2

[L2(Ωe)]3 + C2h
2
∑

γ⊂∂Ωe

‖Jγ

σh‖2
[L2(γ)]3

}

with C1 and C2 interpolation constants. The second term is due to the violation
of the consistency condition at points of the domain other than the Gauss points,
as a result of the interpolation of the variables. This term has been introduced in
Barthold et al. (1996) and is given by

η2
KT = ‖λ̇f(σ, α) − λ̇hf(σh, αh)‖L2(Ω) = ‖λ̇hf(σh, αh)‖L2(Ω)

36



where f(σh, αh) denotes the yield function sampled at (σh, αh) with αh being the
kinematic–internal variable and λ̇h the plastic multiplier, which are both obtained
from the finite element computation. Finally, the last term is the error in the plastic
dissipation given by

η2
dis = ‖σ : (ε̇p − ε̇

p
h)‖2

L2(Ω) + ‖Hα(α̇− α̇h)‖2
L2(Ω)

where H is the hardening modulus.
The time discretization error, on the other hand, is due to the numerical

integration of the flow rule. The error produced within the time interval [tn, tn+1]
is defined as

η2
∆t = ‖σ(tn+1)‖[L2(Ω)]3×3 ‖

∫ tn+1

tn

ε̇p dt− ∆εp‖[L2(Ω)]3×3 (2.47)

where the weight ‖σ(tn+1)‖[L2(Ω)]3×3 has been added by Barthold et al. (1997) in
order to be unit consistent with the space discretization error. Further to plausible
assumptions, (2.47) is estimated by the maximal change of the normal (with respect
to the yield function) between two time (load) steps. It is indeed this result to be
interpreted physically as measure of the deviation of Prandtl–Reuss plasticity from
Hencky plasticity in the current time step.

However, the aforementioned error measure appears to rely more on heuris-
tic considerations motivated by the physics of the phenomenon which is not met,
rather than arising from a theoretical argument typical of an error analysis. Fur-
thermore, the computation of the several terms is realized by assuming recovered
post–processed solutions in place of the unknown exact values. As a result, the
estimation technique lends itself to the same type of criticism as for the recovery
based error estimators.

A family of error measures with clear physical meaning and capable to account
in a simple manner for effects of time and space discretization is represented on the
other hand by the error in the constitutive equations, which is the objective of the
next section.

2.3.3 Error in the Constitutive Equations

The error in the constitutive equations which has been applied successfully for the
assessment of the accuracy of conforming approximations to linear problems is ex-
tended in a natural way to nonlinear dissipative problems of evolution.

Fundamental notion of this class of error measures is the definition of the so–
called admissible solution. This is a particular approximate solution of the given
initial boundary value problem. Its definition depends on the conditions and equa-
tions which are satisfied, whereas its quality is assessed in terms of the conditions
and equations that are not. The application, then, of this theory to assess the
quality of a finite element solution consists in building a corresponding admissible
solution that reflects the approximations associated with the finite element solution.
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The first error measure which exploits these concepts is the one based on the
Drucker’s inequality (Drucker, 1964). The definition of this error is due to Ladevèze
(1985) in the context of the nonincremental method LATIN applied to the solution of
the evolution of elastoviscoplastic materials which follow the conditions of Drucker’s
stability. This error measure was then further investigated in Coffignal (1987) and
applied in Ladéveze et al. (1986) to the control of incremental finite element solutions
of the same class of problems.

The error in the constitutive equations based on Drucker’s inequality applies
to material models defined by the following functional constitutive equations

σ(t) = A(ε(τ), τ ≤ t), (2.48)

where A denotes the constitutive operator which is function of the strain history†.
In particular, the material model is supposed to obey to the Drucker’s inequality.
This property of the model can be formulated as follows (Bussy & Remond, 1985;
Ladevèze & Pelle, 2001). Consider any pair of stress-strain history (σ(t); ε(τ), τ ≤ t)
and (σ̃(t); ε̃(τ), τ ≤ t) which meet ∀t ∈ [0, T ] the constitutive equation (2.48) and
the initial conditions, which are assumed equal to zero. The constitutive model
defined by the operator A is called stable according to Drucker if the following
condition is satisfied

∣
∣
∣
∣
∣
∣
∣
∣

∀(σ, ε), (σ̃, ε̃) meeting equation (2.48),

∀t ∈ [0, T ],

∫ t

0

[σ(τ) − σ̃(τ)] : [ε̇(τ) − ˙̃ε(τ)] dτ ≥ 0,

(2.49)

whereas it is strictly stable if also the following additional condition is met

∀t ∈ [0, T ],

∫ t

0

[σ(τ) − σ̃(τ)] : [ε̇(τ) − ˙̃ε(τ)] dτ = 0 ⇒
∣
∣
∣
∣

σ = σ̃

ε = ε̃
(2.50)

The error in the constitutive equations based on Drucker’s inequality assesses
the quality of admissible solutions Sad = (σad,uad) which are defined by assuming
at any time instant t ∈ [0, T ], a kinematically admissible displacement field uad

and a statically admissible stress field σad. Both uad and σad are required to meet
the initial conditions at t = 0. As a result, Sad is an approximate solution to the
initial boundary value problem, for the constitutive equations (2.48) are generally
not satisfied. The quality of Sad is characterized by defining first the following two
processes meeting the constitutive equation (2.48)

Ŝ = (A(∇suad(τ, τ ≤ t))
︸ ︷︷ ︸

σ̂(t)

; εad(τ, τ ≤ t)

Š = (σad(t);A−1(σad(τ, τ ≤ t))
︸ ︷︷ ︸

ε̌(τ, τ≤t)

†Recall that the restriction of the function f(τ) to times τ not later than the current time t is
called the history of f up to the time t.
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where A−1 denotes the inverse operator of A, and then computing the following
quantity

e2Drucker(T ) = sup
t≤T

∫

Ω

∫ t

0

[σ̂(τ) − σad(τ)] : [ε̇ad(τ) − ˙̌ε(τ)] dτ

︸ ︷︷ ︸

η2(x,t)

dΩ ≥ 0. (2.51)

Indeed, by means of equations (2.49) and (2.50), one can easily check that eDrucker

meets the following properties
∣
∣
∣
∣
∣
∣
∣
∣

eDrucker ≥ 0

eDrucker = 0 ⇒

∣
∣
∣
∣
∣
∣

σ̂ = σad

∀x ∈ Ω, ∀t ∈ [0, T ],
ε̌ = εad

that is, eDrucker can be assumed as measure of the extent to which Sad fails to
satisfy the constitutive equations, and therefore of the extent to which Sad fails to
coincide with Sex, the exact solution of the problem. Elaborating on the expression
of η2(x, t) in the case of material models described by internal variables, Ladevèze
& Pelle (2001) show that η2(x, t) can be expressed as sum of the error in the state
law and the error in the evolution law,

η2(x, t) =
1

2
[(σ − σ̃) : C

−1(σ − σ̃) + (X − X̃) : (Y − Ỹ )]

∣
∣
∣
∣
t

+
1

2

∫ t

0

Γdτ

where X denotes the set of kinematic–type internal variables, Y are the respec-
tive thermodynamic conjugate variable and Γ ≥ 0 is related to the residual in the
evolution law. Without further details related to the definition of these quantities
which will be analysed in Section 3.5.1.2, here, we want just to observe that this
decomposition is consistent with the fact that Sad does not satisfy the complete
constitutive equations. A similar structure of the error will be noted also in the
extended dissipation error introduced in Ladevèze et al. (1999) for material models
with internal variables which admit a standard formulation (Halphen & Nguyen,
1975). For this new measure of error, the admissibility conditions include the kine-
matic compatibility relations, the equilibrium equations and the initial conditions.
As a result, the only equations left apart are the complete constitutive equations,
i.e. the state laws and the evolution laws.

The error measure (2.51) has a global character in time and space. Further-
more, due to its definition, it is not possible to distinguish the contribution to the
error arising from time and space discretization, thus it cannot be used to drive an
adaptive process. To remedy this, Gallimard (1994) and Gallimard et al. (1996)
have applied the concept of error in the constitutive equations to the problems ob-
tained by using only time and space discretization, respectively. In this way, the
authors have obtained error indicators that separate the effects of time and space
discretization, respectively, which then have been used to control the discretization
process.
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The first use of the error in the constitutive equations to constitutive models
described in terms of internal variables and having an associative flow rule is due to
Ladevèze (1989). The admissibility conditions combine the kinematic compatibility
relations, the equilibrium equations, the state law and the initial conditions. The
only equation which is left out is the evolution law that governs the dissipative
phenomenon. By exploiting the convexity structure of these equations, Ladevèze
(1989) introduces, therefore, the concept of dissipation error given by the residual
in the evolution law, which is appropriately reformulated in terms of the dissipation
pseudo–potential and its Legendre–Fenchel transform. The theory of this error will
be detailed in Section 3.5.1.1.

Likewise the error measure based on Drucker’s inequality, the dissipation error
has then applied in Moës (1996) and Ladevèze & Moës (1997) to assess the accu-
racy of incremental finite element solutions of associative problems. Furthermore,
error indicators which separate the sources of the different discretizations have been
defined and used to drive the adaptive process in time and space.

As we have already mentioned, another measure of the error in the constitu-
tive equations has been introduced in Ladevèze et al. (1999) for material models
described by internal variable and admitting standard formulation. The new mea-
sure is an extension of the dissipation error obtained by removing the state laws
from the admissibility conditions. Applications of this error measure have been
given for an elastic-damage coupled model in Ladevèze et al. (1999) solved with
the nonincremental LATIN method and to the Prandtl–Reuss plasticity model in
Orlando & Peric (2000) solved with the classical incremental finite element method.
The extended dissipation error will be detailed in Section 3.5.1.2 and will represent
the tool employed to analyse the effects of change of finite element mesh in classical
finite element incremental solution of elasto–plastic problems.

The measures of the error in the constitutive equations given in this section
apply to associative material models. Their key property is the characterization
of the constitutive equations as solution of a scalar equation defined by convex
scalar potentials. If the equation is not satisfied, it assumes positive value. This
same characterization of the constitutive equations has also been given by de Saxcè
(1992) to a much larger class of materials, such as the non–associated model of
cyclic–plasticity of Chaboque–Marquis and the non–associated model of Drucker–
Prager, which are termed implicit standard models. The characterization is based
on the introduction of a unique potential, function of the rates and the associated
force, which is used by Ladevèze (1999) to extend the notion of dissipation error
also to this class of material models, whereas applications of the new measure of
error have been given in Hjiaj (1999).

2.3.4 Heuristic Error Indicators

Lately, the emergence of new supercomputer architectures has allowed large-scale
simulations of engineering problems and the incorporation of more detailed physics in
the model. This has led to a substantial increase in the complexity of the simulation
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process that also incorporates non-linear mathematical models. As a result, adaptive
strategies for the approximate solution of these problems are often based on heuristic
error indicators or adaption indicators. A physically based argument is generally
adopted as justification of their definition, which is typical for the problem under
consideration. The motivation in using error indicators is that their primary quality
is to be able to distinguish the elements and time steps which contribute mostly
to the global accuracy of the approximation, even though they finally may fail to
yield accurate global estimates. As a result, they represent a tool for the adaptive
construction of the approximation, that is, they may be used as a guide for a sequence
of discrete choices (to refine or not to refine a given element; to reduce or not to
reduce a given time step) and not for the definition of the stopping criterion which
should be based on an error estimate. It also appears clear that works in this area
are much more abundant than in that of the development of error estimate. In
the following we give only a brief overview of some error indicators that have been
employed in practice.

The recovery based error estimate introduced by Zienkiewicz & Zhu (1987) has
been applied in Zienkiewicz et al. (1988) to assess the finite element approximation
of the flow formulation of incompressible plastic flow in which elastic effects are
neglected. The above authors observe that in extrusion problems the energy norm
has a definite meaning as it is simply the error in the rate of energy dissipation.
Consequently, the total energy dissipation norm is defined as

|||u||| =

[
∫

Ω

|σ : ε̇| dΩ

] 1
2

where u is the displacement field, and the error e = u − uh as

|||e||| =

[
∫

Ω

∣
∣(σ − σh) : (ε̇ − ε̇h)

∣
∣ dΩ

] 1
2

.

Since the basic formulation is mixed and the pressure variable is introduced as a
means of ensuring incompressibility, Zienkiewicz et al. (1988) consider the energy
norm of the deviatoric part of σ, whose constitutive equation is

σD = µDε̇

where D is an appropriate material tensor and µ is the viscosity which in general is
dependent on the strain rate.

As a result, the energy norm of the error is written as

|||e||| =

[
∫

Ω

(σD − σh,D) : (µD)−1(σD − σh,D) dΩ

] 1
2

. (2.52)

The estimate of the measure of the error defined by equation (2.52) is obtained
by replacing the exact solution σD with an approximation σD,? of higher order to
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that given by the finite element solution and obtained with the recovery technique
described in Zienkiewicz & Zhu (1987).

This error indicator by its definition accounts for only effects of space dis-
cretization. It is thus used as basis for the refinement of the finite element mesh in
the current time step. Furthermore, it does not account for the error in the incom-
pressibility condition, which is enforced in a weak sense in the mixed formulation.

A posteriori error estimates based on the Zienkiewicz–Zhu adaptive strategy
and the energy norm have been appropriately modified by Perić et al. (1994) to ac-
count for the elastoplastic deformation of the conventional and Cosserat continuum
model. The corresponding error estimates are based on the rate of plastic work and
on the plastic dissipation. After introducing the following definitions of error,

eWp =

[
∑

Ωe∈Th

∫

Ωe

∣
∣(σ − σh) : (ε̇p − ε̇

p
h)
∣
∣ dΩ

] 1
2

,

(2.53)

eD =

[
∑

Ωe∈Th

∫

Ωe

∣
∣(σ − σh) : (ε̇p − ε̇

p
h) + (X − Xh) : (α̇ − α̇h)

∣
∣ dΩ

] 1
2

,

where α denote the set of kinematic–type internal variables and X the respective
conjugate thermodynamics forces, estimates for (2.53)1 and (2.53)2 are obtained by
simply replacing the exact values with postprocessed solutions of the finite element
approximation. The error based on the dissipation functional, in particular, has been
then employed as basis for the finite element adaptive solution of a strain localization
problem. The latter has been described by resorting to the Cosserat continuum in
order to overcome serious limitations exhibited by classical continuous models in the
post instability region. The expression of the estimate has been particularized for the
classical model of J2–elastoplasticity which is generalized by introducing additional
degrees of freedom within the Cosserat continua. In this case it is shown that the
expression of the plastic dissipation involves only classical quantities. Assuming
time discretization of the evolution problem is performed by the backward Euler
algorithm, within a generic time step In = [tn, tn+1], the a posteriori error estimate
εD based on the dissipation functional is given by the following expression

εD =
∑

Ωe∈Th

∫

Ωe

[

(σ?
n+1 − σh

n+1) :
3

2
P(

σ?
n+1

R?
n+1

− σh
n+1

Rh
n+1

) +

+
∣
∣R?

n+1 − Rh
n+1

∣
∣

](

∆α?
n+1 − ∆αh

n+1

)

dΩ

where P is a second order tensor used to represent the yield function in the seven–
dimensional stress space for plane strain J2–elastoplasticity within a Cosserat con-
tinuum, whereas α denotes the accumulated plastic strain and R the conjugate
variable. The starred quantities denote the postprocessed solutions. Likewise the
previous error estimate, error indicators are simply obtained by localization of the
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integrals at each element. These error indicators are, in turn, used only to drive
mesh refinement, for they reflect only effects of space discretization.

A comparative evaluation of various error estimators for isotropic, elasto–
plastic and viscoplastic solids undergoing large deformations has been carried out
in Tetambe et al. (1995). Five distinct error estimators are studied. These are the
L2–norm of the stress error,

I1 =

[
∫

Ω

(σ − σh) : (σ − σh) dΩ

] 1
2

,

the L2–norm of the total strain error,

I2 =

[
∫

Ω

(ε − εh) : (ε − εh) dΩ

] 1
2

,

the L2–norm of the equivalent total strain error,

I3 =

[
∫

Ω

(εeq − εheq)
2 dΩ

] 1
2

,

where εeq is an equivalent scalar strain given by an appropriate norm of the total
strain ε; the L2–norm of the incremental total strain given by

I4 =

[
∫

Ω

(∆ε − ∆εh) : (∆ε − ∆εh) dΩ

] 1
2

,

and finally the energy rate error norm introduced by Zienkiewicz et al. (1988). As
usual, estimates for these measures of error are obtained by simply replacing the ex-
act values with approximations of higher order, obtained by a suitable postprocessing
of the finite element approximation. This study shows that the error computed using
each of these estimators increases from its initial value as the deformation continues
in the plastic zone in a large strain analysis. In particular, the error estimators
based on the energy rate and the L2–norm of the incremental strain were able to
predict the region with the maximum error.

Since these error estimators are defined in terms of incremental quantities,
they mirror to different extent the effects of only space discretization. As a result,
they are not able to predict consistently a monotonically increasing error with the
deformation.

The adaptive procedures for large–deformation finite element analysis of elastic
and elasto–plastic problems implemented by Lee & Bathe (1994) is based on a
pointwise indicator for error in stresses and a pointwise indicator error in plastic
strain increments. The pointwise error in stress indicator is a pointwise version of
the stress smoothing type of indicators. This indicator estimates the error in the
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stresses by giving the differences between the unaveraged stress σh and a smoothed
stress σ?. In particular, only the pressure and the effective stress (which are related
to the first and second stress invariant) are considered in the evaluation of the
accuracy of the finite element solution. The error in the plastic strain increment
tensor is given by

∆eεp = ∆εp − ∆ε
p
h (2.54)

where

∆εp =

∫ tn+1

tn

ε̇pdt.

An estimate of the error (2.54) is computed by considering the L2–norm of the
difference between the plastic strain increments obtained using the trapezoidal rule,
which is second order accurate, and the Euler backward method. Though this is
an indicator on the time discretization error, it is used in Lee & Bathe (1994) as
indicator of the space discretization error along with the indicator for the error on
the stresses.

In the context of adaptive strategies for problems with localization of defor-
mations Ortiz & Quigley (1991) argue heuristically that localized solutions may
reasonably expect to be of bounded variation. The total variation of the solution
over each element is thus assumed as a suitable adaptor indicator to drive the adap-
tive process. For 1D problems, the bounded variation of a scalar function v = v(x)
is defined as follows

∣
∣
∣
∣
∣
∣

Given: v : [a, b] ⊂ R → R

|v|BV,[a,b] = sup
∑N

k=1 |v(xk) − v(xk−1)|
(2.55)

where the supremum is taken over all sequences a = x0 ≤ x1 ≤ . . . ≤ xN = b,
∀N ∈ N. Elements are targeted for refinement when the variation of the solution
within each element is determined to be too high for the interpolation to adequately
resolve it. Ortiz & Quigley (1991) also show that in 1D problems this error indicator
can be derived from interpolation error bounds, that is, the equidistribution of the
indicator (2.55) over the mesh is shown to minimize the L∞ interpolation error.

Use of error indicators based on minimization of interpolation error have also
been employed by Demkowicz et al. (1985) and Radovitzky & Ortiz (1999), among
others. In these works, the methodology set by Diaz et al. (1983) for grid optimiza-
tion, that is, for relocation of the nodes within a fixed number of degree of freedom,
is employed for mesh refinement. The estimation of the local errors is based on
interpolation error bounds and extraction formulas for highly accurate estimates of
the derivatives of the exact solution which appear in the bound. In the method-
ology proposed by Radovitzky & Ortiz (1999), starting with a very fine mesh, the
discretization error can be bounded from above by the interpolation error, once a
linearised analysis is carried out. In order to compute the size of the exact solution,
which appears in the a priori error bound, Radovitzky & Ortiz (1999) consider the
error of a lower order approximation ϕ̃

p−1
h such that the computed finite element

approximation ϕ
p
h represents the finite element nodal interpolation of ϕ̃

p−1
h .
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These error indicators are based on a priori error estimates, therefore, usually,
they deliver crude estimates. However, they present the advantage since they can
be applied for those problems where energy estimates based on the residual break
down due to the loss of ellipticity of the governing equation. Therefore, they must
be used with judgement, for they imply a certain regularity of the exact solution
and require accurate techniques to calculate derivatives of the exact solution.

2.4 Concluding remarks

The considerations of the previous sections show that the formal structure of the
theory of a posteriori error estimation for linear problems is well understood, as
opposite to the non linear problems. This mirrors the different maturity achieved
in the theoretical analysis of the two classes of problems.

In the class of the linear elliptic problems, the recovery based error estimators
represent perhaps the most widely used a posteriori estimates in solid mechanics
applications for its relatively simple implementation. Also the explicit residual type
error estimates are quite easy to use, for they simply require computing norms of
the residual, once a certain weight between the jump term and the internal residual
has been set. However, the way that the residual influences the error is accounted
for by the stability properties of the dual problem, whose solution can pose further
difficulties. The implicit residual type estimation of the error, on contrary, deliver
much more effective estimates at the fraction of cost of solving additional local finite
element problems posed on local higher order finite element spaces. In this class,
the error in the constitutive equations developed by Ladevèze & Leguillon (1983)
appears to be the most robust.

For nonlinear problems, very few theoretically based error estimates have been
developed. In particular, for time dependent problems, the measures of the error
in the constitutive equations have clear physical meaning and are able to account
for all the sources of discretization. In the finite element solution of elastoplastic
problems discretized in time with the backward Euler method, which will be the class
of problems hereafter considered, apart from time and space discretization, another
source of error needs to be considered. This arises as a result of the change of finite
element mesh from one time step to the other, which introduces a discontinuity
jump in the time linear interpolation of the discrete values of the solution. As a
result, only measures of error that account for time discretization effects can reflect
the low order regularity of the approximation across the time tn when the change
of mesh occurs. Thus, the extended dissipation error introduced by Ladevèze et al.
(1999) naturally lends itself for this aim.

The theoretical analysis of this measure of error and the way it is able to
accommodate discontinuity jump in the admissible solution is the main objective of
the next Chapter.
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Chapter 3

The error in the constitutive
equations for dissipative nonlinear
problems

3.1 Introduction

In this chapter the general theory to assess the quality of the so called admissible
solutions of dissipative nonlinear problems is presented following Ladevèze & Pelle
(2001).

After introducing the set of conditions and equations that govern the behaviour
of a standard generalized model with internal variables (Halphen & Nguyen, 1975),
and noting the dissipative nature of the elastoplastic problem under examination, a
simple error analysis of the following first order ordinary differential equation

∣
∣
∣
∣
∣

u′(t) + a(t) u(t) = f(t),

u(t = 0) = u0

with a ≥ 0, is performed. This is done in order to motivate the use of residual of
approximate solutions of dissipative problems as indication of the error produced
and also to show the influence on the error of the discontinuity jump which is
present in the approximate solution at the time instant tn. An a posteriori error
estimation analysis is given, which delivers an upper bound expressed in terms of
the discontinuity jump.

As introduction to the error in the constitutive equations, the fundamental no-
tion of admissible solution is given. This is a particular approximate solution of the
problem under exam. Its definition depends on the conditions and equations which
are satisfied, whereas its quality is assessed in terms of the conditions and equations
that are not. Consequently, the concepts of dissipation error and extended dissipa-
tion error for time continuous admissible solutions, and the one with discontinuity
jump at the time instant tn are given. A new measure of error in the constitutive
equations of rate–independent plasticity models is defined which is called augmented
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extended dissipation error. Finally, a definition of error in solution concludes the
chapter.

3.2 The reference continuum problem: The Ini-

tial Boundary Value Problem for a model with

internal variables

3.2.1 Preliminaries

Consider a generic continuum body B with boundary ∂B occupying a regular domain
Ω of the three dimensional Euclidean space. Let ∂Bd and ∂Bt be disjoint parts of
∂B, with ∂Bd∪∂Bt = ∂B, where displacements and surface tractions are prescribed,
respectively. We will assume displacements to be small in the quasi-static evolutive
process of the body so that geometry changes and inertial effects may be neglected.
As a result, the analysis will be performed in the reference configuration which is
identified with the domain Ω while the boundary ∂B is identified with ∂Ω. Likewise,
the identifications ∂Bt with ∂Ωt and ∂Bd with ∂Ωd are assumed, as well.

3.2.2 Equilibrium Equation

Denote with S the linear space of the symmetric second order stress tensors. The
statically admissible stress fields, σ = σ(x, t) ∈ S, are such that the weak form of
the equilibrium, given by the virtual work, is satisfied, that is,
∫

Ω

σ : ∇η dΩ =

∫

Ω

b · η dΩ +

∫

∂Ωt

t · η ds ∀η ∈ V0, ∀ t ∈ I = [0, T ] (3.1)

where b = b(x, t) and t = t(x, t) are respectively the body force and surface traction
fields and V0 is the linear space of the virtual displacements which vanish on ∂Ωd,
whereas I is the time interval of interest (Gurtin, 1972; Ladevèze, 1999). Whenever
necessary, the equilibrium condition will also be written as

〈σ(x, t),∇η(x)〉 = 〈b(x, t),η(x)〉+ 〈t(x, t),η(x)〉∂Ωt,

with 〈•, •〉 and 〈•, •〉∂Ωt denoting integrals over the domain Ω and the boundary ∂Ωt

where traction conditions have been assigned, respectively.

3.2.3 Compatibility Equations

The compatibility equations refer to the displacements and the associated defor-
mation. The conditions which define a kinematically admissible displacement field
guarantee internal and external compatibility. In mathematical terms, this means
that a displacement field u = u(x, t) is kinematically admissible if it is time con-
tinuous, at least once differentiable in space and meets the boundary conditions on
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∂Ωd. We refer to V as the space of the kinematically admissible displacements.
Let E be the linear space of the symmetric second order strain tensors. The kine-
matically admissible strain fields, ε = ε(x, t) ∈ E , are continuous fields which are
obtained from the kinematically admissible displacement fields u = u(x, t) ∈ V as
follows

ε =
1

2
(∇u + ∇uT)

def
= ∇su, (3.2)

i.e., ε is the symmetric part of the second order tensor ∇u.

3.2.4 Constitutive Equations

3.2.4.1 Thermodynamic Admissibility

In the constitutive modelling with internal variables, which is hereafter adopted,
the functional dependence of the present state of the material upon the history of
the total strain and temperature (which are the observable variables) is replaced by
equations that define the current state of the material in terms of only the current
value of both the observable variables and additional variables, called generally hid-
den or internal variables. They are macroscopic measures of irreversible phenomena
(Lemaitre & Chaboche, 1990; Besson et al., 2001). The success of such formulation
is due to the simplicity, in general, of the mathematical and numerical analysis of
the problem which governs finally the evolution of the whole system.

Our interest, in particular, will focus on constitutive models of rate inde-
pendent plasticity in isothermal conditions belonging to the class of the so-called
standard generalised materials as introduced by Halphen & Nguyen (1975). By ex-
ploiting the convex structure of these models, emphasis will be placed especially on
scalar equivalent formulations of the tensorial constitutive equations.

The physical validity of a constitutive model is usually expressed by its thermo-
dynamic admissibility (Coleman & Gurtin, 1967; Maugin, 1992), which is obtained
by imposing the validity of the Clausius-Duhem inequality. For isothermal processes,
the aforementioned inequality represents the difference between the external total
power and the rate of variation of the reversible stored energy, that is,

−ψ̇ + σ : ε̇ ≥ 0, (3.3)

where ψ is the free Helmholtz energy per unit volume defined in terms of the state
variables which describe the model, and σ : ε̇ is the total external power.

The inequality (3.3) is obtained by combining the local form of the first princi-
ple of thermodynamics, which expresses the conservation of energy, and the second
principle, which refers notably to the direction of irreversible processes.

A thermodynamically consistent model is, therefore, obtained by specifying
the state variables along with the functional form of the free Helmholtz energy and
the complementary laws which describe the time evolution of the internal variables
in respect of (3.3).
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3.2.4.2 State variables

In the definition of the state variables, which characterise uniquely the state of
the system, we refer only to the so called kinematic type variables whereas the
corresponding static one are obtained by duality as introduced by the total energy
and the dissipation. In particular, we assume the following: (i) temperature to be
constant with time and uniform in space so that it will not be considered hereafter;
(ii) that the total strain can be uniquely decomposed additively into its elastic and
plastic part, that is,

ε = εe + εp, (3.4)

and finally (iii) that the local state of the material is described by means of ad-
ditional internal variables α which may only include scalar and/or second order
tensors (Coleman & Gurtin, 1967; Reddy & Martin, 1994), characterizing the inter-
nal changes of the material.

3.2.4.3 Equations of State

The reversible energy density stored under any form in the material is represented
by the free Helmholtz energy ψ which is assumed to depend on the variables (εe,α).
In particular, we assume ψ(εe,α) to be expressed as a sum of two proper strictly

Figure 3.1: Energy repartition for a linear elastic and linear isotropic hardening model

convex and lower semicontinuous functions§ of each of its arguments: ψe(ε
e) which

§Let V be a linear space. A subset K ⊆ V of V is convex if ∀x, y ∈ K, ∀ t ∈]0, 1[, tx+(1−t)y ∈
K. Let f : V → R̄ = R ∪ {−∞} ∪ {+∞}, f is convex if ∀x, y ∈ V , ∀ t ∈]0, 1[, f(tx + (1 − t)y) ≤
tf(x) + (1 − t)f(y), with the convention rules +∞ + (−∞) = +∞, 0 · (+∞) = 0 · (−∞) = 0.
The function is strictly convex if the inequality holds strictly. A convex function is proper if
it nowhere takes the value −∞ and is not identically equal +∞. The epigraph of a convex

function, that is, the set epi f =
{

(x, α) ∈ V × R
∣
∣f(x) ≤ α

}

is a conves subset of V × R and

so is its effective domain, that is, the set dom f =
{

x ∈ V
∣
∣f(x) ∈ R

}

. Let V be a linear

topological space and x0 ∈ dom f . f is lower semicontinuous at x0 if f(x0) ≤ lim inf
x→x0

f(x), where

lim inf
x→x0

f(x)
def
= inf

{
α ∈ R̄

∣
∣∃xn → x0 with f(xn) → α

}
is the lower limit of f at x0. A function
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is the stored energy due to elastic strain and ψp(α) which is the stored energy due
to plastic and internal parameters related to hardening effects (Nguyen, 2000), cf.
Figure 3.1, i.e.,

ψ(εe,α) = ψe(ε
e) + ψp(α).

By expanding the Clausius-Duhem inequality which is required to hold for any
admissible thermodynamic process (ε, εp,α) (Coleman & Gurtin, 1967), we obtain
the state equations

σ =
∂ψe

∂εe
(εe), A =

∂ψp

∂α
(α), (3.5)

and the associated intrinsic mechanical dissipation

σ : ε̇p − A : α̇ ≥ 0. (3.6)

The state equations (3.5) are also called state laws and in particular we refer to (3.5)1
as the elastic law, whereas we refer to (3.5)2 as the hardening law. The force-type
variable A, defined by the hardening law (3.5)2, is termed the thermodynamic force
conjugate to α (Lemaitre & Chaboche, 1990; Besson et al., 2001). If the functions
ψe = ψe(ε

e) and ψp = ψp(α) are not differentiable, then the concept of subgradient†

is introduced (Germain et al., 1983).
For our subsequent developments, it is useful to consider the following equiv-

alent formulation of the state equations (3.5) (Germain et al., 1983; Ladevèze &
Pelle, 2001),

ψe(ε
e) + ψ∗

e(σ) − σ : εe

︸ ︷︷ ︸
sl
e η2

x,t(σ; εe)

= 0 ⇔ σ − ∂ψe

∂εe
(εe) = 0,

(3.7)

ψp(α) + ψ∗
p(A) − A : α

︸ ︷︷ ︸
sl
p η2

x,t(A; α)

= 0 ⇔ A − ∂ψp

∂α
(α) = 0,

where ψ∗
e(σ) and ψ∗

p(A) are the conjugate functions or Legendre-Fenchel transforms
of ψe(ε

e) and ψp(α), respectively, cf. Figure 3.2. These are defined as

f : V → R̄ is lower semicontinuous if and only if its epigraph is a closed subset of V × R supplied
with the topology product (Ekeland & Temam, 1976).

† Let V and V? be two linear topological spaces placed in duality by the separating bilinear
form 〈·, ·〉V?,V . Given a real valued convex function f : v ∈ V → R and v0 ∈ V , if there exists a
vector a ∈ V? such that f(v) − f(v0) ≥ 〈a,v − v0〉, ∀v ∈ V , f is said to be subdifferentiable at
v0 and a is referred to as a subdifferential of f at v0. The set of vectors a ∈ V? which satisfy the
previous property is referred to as the subgradient of f at v0 and is denoted with ∂f(v0). One
can easily show that ∂f(v0) ∈ 2V

?

is convex and closed in
(
V?, σ(V?,V)

)
. The above definition of

subdifferential ∂f(·) of a convex function f has many of the useful properties of the derivative. If
the function f is not convex, the aforementioned definition of subdifferential is not a particularly
helpful idea. Thus, several other definitions of subdifferential of a non convex function have been
proposed (Borwein & Lewis, 2000).
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Figure 3.2: Value at σ of the Legendre-Fenchel transform of ψe(ε
e)

ψ∗
e : σ ∈ S → ψ∗

e(σ) = sup
εe∈E

{σ : εe − ψe(ε
e)} ∈ R ∪ {+∞},

(3.8)

ψ∗
p : A ∈ A → ψ∗

p(A) = sup
α∈Λ

{A : α − ψp(α)} ∈ R ∪ {+∞},

with σ : ε denoting the duality¶ pairing of the two spaces S and E , whereas A : α

is the duality pairing of the space Λ of the strain-type internal variables α and the
space A of the thermodynamic forces A.

The functions defined by (3.8) are convex lower semicontinuous functions, for
they are pointwise supremum of a family of continuous affine functionals‖. Further-
more, if ψe and ψp are differentiable, their conjugates (3.8) amount to their Legendre
transforms, respectively.

Upon the definition of the Legendre-Fenchel transforms, it follows that for any
pair (σ, εe) ∈ S × E and (α,A) ∈ Λ ×A,

ψ∗
e(σ) + ψe(ε

e) − σ : εe ≥ 0

(3.9)

ψ∗
p(A) + ψp(α) − A : α ≥ 0

where the respective equality applies if and only if (σ, εe) is the solution of (3.5)1
and (A,α) is the solution of (3.5)2, respectively, cf. Figure 3.3.

¶Let X and Y be two linear spaces over the same scalar field R. We say that X and Y are dual
or that (X , Y) is a dual system if a bilinear form 〈·, ·〉 : X × Y → R is given. A dual system is
called separated if (i) ∀x ∈ X − {0}, ∃y ∈ Y : 〈x,y〉 6= 0, (ii) ∀y ∈ Y − {0}, ∃x ∈ X : 〈x,y〉 6= 0.
As a result, the weak topology σ(X , Y) [resp. σ(Y, X )] on X [resp. Y] generated by Y [resp. X ] is
a Hausdorff locally convex (Hlc) topology and it is the weakest locally convex topology on X [resp.
Y] such that its topological dual X ? [resp. Y?] (i.e. the set of linear continuous functionals over
(X , τ) [resp. (Y, µ)]) is Y [resp. X ]. Here, τ and µ denote Hlc topologies on X and Y, respectively
(Brezis, 1986). In a Hlc space the weakly closed convex sets are identical with the closed convex
sets. Thus, as far as a dual pair of linear spaces is given and they are supplied with separated
locally convex topologies compatible with the duality, we can refer to convex lower semicontinuous
functionals without specifying the topology (Ekeland & Temam, 1976).

‖Since it is epi(sup
i∈I

fi) =
⋂

i∈I

epifi, every intersection of closed convex sets is a closed convex set.
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Figure 3.3: Geometrical interpretation of the inequalities (3.9) for linear elastic and linear isotropic
hardening model

Figure 3.4: Definition of subdifferential at ε̄e. (a) Differentiable function. (b) Non Differentiable
function

In conclusion, given its importance and for completeness, we sketch the equiv-
alence between (3.5)1 and (3.7)1.

Proof. Given σ ∈ S, let ε̄e ∈ E be such that, (cf. Figure 3.2),

ψ∗
e(σ) = σ : ε̄e − ψe(ε̄

e) = sup
εe∈E

{σ : εe − ψe(ε
e)}.

It follows
σ : ε̄e − ψe(ε̄

e) ≥ σ : εe − ψe(ε
e), ∀εe ∈ E

that is,
ψe(ε

e) − ψe(ε̄
e) ≥ σ : (εe − ε̄e), ∀εe ∈ E

This, from the definition of subdifferential (cf. note † and Figure 3.4) means

σ ∈ ∂ψe(ε̄
e).

If the function ψe(ε
e) is differentiable at ε̄e, then ∂ψe(ε̄

e) =
{∂ψe

∂εe
(ε̄e)

}

which is

(3.5)1.
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Viceversa, if σ ∈ ∂ψe(ε̄
e), then it follows

ψe(ε
e) − ψe(ε̄

e) ≥ σ : (εe − ε̄e), ∀εe ∈ E
that is,

σ : ε̄e − ψe(ε̄
e) ≥ σ : εe − ψe(ε

e), ∀εe ∈ E .
Thus,

ψ∗
e(σ) = σ : ε̄e − ψe(ε̄

e)

which is (3.7)1.

The equivalence between (3.5)2 and (3.7)2 can be proved using the same argu-
ments.

3.2.4.4 Complementary Equations. Associative Plasticity

In isothermal processes where irreversible phenomena occur, that is, the dissipation
−ψ̇+σ : ε̇ does not vanish, the state equations alone are not sufficient to define the
current state of the material. Supplementary equations are needed, which allow one
to characterize the history of the observable variables in terms of the internal vari-
ables (Bataille & Kestin, 1979). These equations, therefore, must have differential
character, that is, they have to relate the rate of the internal variables to the asso-
ciated thermodynamic forces. The conjugacy is here meant in the sense of power as
defined by the intrinsic mechanical dissipation σ : ε̇p −A : α which is used to relate
by duality the space Σ̇ = Ė × Λ̇ of the rate of internal variables (ε̇p,−α̇) with the
space Σ = S ×A of the thermodynamic forces (σ,A). Here, we have denoted with
Ė the linear space of the rate of the strain tensors ε̇p, and with Λ̇ the linear space
of the tensorial quantities represented by α̇.

The complementary equations are only restricted to meet the intrinsic mechan-
ical inequality (3.6). Since σ : ε̇p − A : α̇ represents the part of the plastic power
which is actually dissipated in heat form, assuming the non negativity of the intrin-
sic mechanical dissipation means that we require the irreversible processes described
by the constitutive model under consideration to produce heat (Besson et al., 2001).

There are several approaches to the definition of the complementary laws in
the respect of (3.6) (Chaboche, 1996). A simple way to ensure a priori the thermo-
dynamic consistency of the model is given by the class of the standard generalised
materials introduced in Halphen & Nguyen (1975). In this model, one assumes the
existence of a potential of dissipation ϕ(ε̇p,−α̇) in the space Σ̇ = Ė × Λ̇ of rate of
dissipative variables, which is non negative, convex in its variables and such that
ϕ(0, 0) = 0. The complementary laws are then given by

(σ,A) ∈ ∂ϕ(ε̇p,−α̇) (3.10)

where the symbol ∂ denotes the subdifferential operator (Rockafellar, 1970a; Ekeland
& Temam, 1976). As a result of the properties of ϕ(ε̇p,−α̇) and the definition (3.10)
of the complementary laws, the thermodynamic consistency of the material model
follows quite easily:
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Proof. From the meaning of subdifferential of a convex function, and the duality
established by the mechanical intrinsic dissipation, it follows

ϕ(ε̇p′,−α̇′) − ϕ(ε̇p,−α̇) ≥ σ : (ε̇p′ − ε̇p) − A : (α̇′ − α̇), ∀(ε̇p′,−α̇′) ∈ Σ̇.

Thus, for (ε̇p′,−α̇′) = (0, 0) one obtains

ϕ(0, 0) − ϕ(ε̇p,−α̇) ≥ −σ : ε̇p + A : α̇

and for the properties of ϕ(ε̇p,−α̇), it follows finally

σ : ε̇p − A : α ≥ ϕ(ε̇p,−α̇) ≥ 0

The definition of the complementary laws (3.10) in terms of the subdifferen-
tial allows the important class of non differentiable dissipation potentials associated
with time independent dissipative processes, which is hereafter considered, such as
dry friction, plasticity, brittle fracture and damage, to be included in the same the-
oretical framework (Panagiotopoulos, 1985; Nguyen, 1994). The rate independent
phenomena, in fact, are characterised by assuming the dissipation potential as a
lower semicontinuous convex positive homogeneous function of degree one (Pana-
giotopoulos, 1985; Nguyen, 1994). In geometrical terms, such function presents a
convex closed set as epigraph, and for the property,

ϕ(m(ε̇p, α̇)) = mϕ(ε̇p, α̇) ∀m > 0,

which defines the positivity homogeneity of degree one of the function ϕ, the epi-
graph is, in particular, a cone with vertex in the origin‖. Consequently, therein,
the function is not differentiable, cf. Figure 3.5. A function with the above prop-
erties is called a closed gauge∗∗. In this case, it is possible to show (Maugin, 1992;
Han & Reddy, 1999) that the dissipation potential ϕ(ε̇p,−α̇) may be character-
ized as support function of a closed convex domain E ⊆ Σ, containing the origin
(σ,A) = (0, 0), that is,

ϕ(ε̇p,−α̇) = sup
(σ,A)∈E

{σ : ε̇p − A : α̇}, ∀(ε̇p,−α̇) ∈ Σ̇ (3.11)

with E, called the elastic domain, defined by

E = {(σ,A) ∈ Σ
∣
∣σ : ε̇p − A : α̇ ≤ ϕ(ε̇p,−α̇), ∀(ε̇p,−α̇) ∈ Σ̇}. (3.12)

‖A cone K ⊆ V is a set such that the closed half line {αx : α ≥ 0} is entirely contained in K

whenever x ∈ K
∗∗A function γ : V → [0, +∞] is called a gauge if γ is a non–negative positively homogeneous

convex functional such that γ(0) = 0, i.e. if the epigraph of γ is a convex cone in V × R+, where
R+ = {α ∈ R : α ≥ 0}. If γ is a gauge, there exists a nonempty convex set K of V such that

γ(x) = γK(x)
def
= inf {λ > 0: x ∈ λK}. The set K is not uniquely determined by γ in general,

although one always has γC(x) = γ(x) for C = {x ∈ V : γ(x) ≤ 1}. If the gauge γ is also lower
semicontinuous, C is the unique closed convex set containing the origin such that γC(x) = γ(x)
(Rockafellar, 1970a).
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Figure 3.5: Epigraph of a positive homogeneous function of degree one

In the special case of a regular domain, in the space Σ = S × A of the generalised
stresses q = (σ,A), the elastic domain may be expressed as

E = {q = (σ,A) ∈ Σ
∣
∣ f(q) ≤ 0}

where f = f(σ,A), named the yield criterion, is lower semicontinuous, convex and
such that f(0, 0) ≤ 0.

The set E defines the locus of the admissible generalised stresses. The name
derives from the observation that the thermodynamic forces conjugate to (ε̇p,−α̇) =
(0, 0), i.e., to an instantaneous elastic response, belong to the elastic domain E, that
is,

(σ,A) ∈ ∂ϕ(0, 0) = E (3.13)

and also, if (ε̇p,−α̇) 6= (0, 0), we have

(σ,A) ∈ ∂ϕ(ε̇p,−α̇) ⊆ ∂E. (3.14)

As a result, for any (ε̇p,−α̇) the associated thermodynamic forces (σ,A) in this
model are constrained to belong always to the elastic domain E. Next, we prove
only (3.13), whereas (3.14) can be easily obtained once the equivalent formulation
of (3.10) in terms of the Legendre-Fenchel transform of ϕ is given.

Proof. By definition of subdifferential,

∂ϕ(0, 0) = {(σ,A) ∈ Σ∗
∣
∣ϕ(ε̇p,−α̇) − ϕ(0, 0) ≥ σ : ε̇p − A : α̇, ∀(ε̇p,−α̇) ∈ Σ̇}

and since ϕ(0, 0) = 0 we obtain finally (3.12), thus ∂ϕ(0, 0) = E.

In place of equation (3.10), it is usually much more convenient to refer to
the inverse relations obtained by introducing the Legendre-Fenchel transform of ϕ
defined as

ϕ∗ : (σ,A) ∈ S × A → ϕ∗(σ,A) = sup
(ε̇p,−α̇)∈Σ̇

{σ : ε̇p − A : α̇ − ϕ(ε̇p,−α̇)}.
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Since ϕ(ε̇p,−α̇) is the support function of E, the dual dissipation potential ϕ∗(σ,A)
is then the indicator function of E defined as

ϕ∗(σ,A) = IE

def
=

{

0 if (σ,A) ∈ E

+∞ if (σ,A) 6∈ E,

The evolution equations for the internal variables are therefore given by (Maugin,
1992),

(ε̇p,−α̇) ∈ ∂ϕ∗(σ,A) =

{
∅ if (σ,A) 6∈ E

NE(σ,A) if (σ,A) ∈ E

(3.15)

where ∅ is the empty set whereas the symbol NE(σ,A) denotes the normal cone at
(σ,A) to E. This is a subset of the space Σ̇ dual to Σ where E belongs to, and is

Figure 3.6: Normal cone to the convex set E

defined as

NE(σ,A)
def
=
{
(ε̇p,−α̇) ∈ Σ̇

∣
∣ (σ − τ ) : ε̇p − (A − B) : α̇ ≤ 0, ∀(τ ,B) ∈ E

}

which is a closed convex cone in Σ̇.
Since Σ and Σ̇ are finite dimensional spaces, the normal cone can be identified

with the cone of the outwards normals at (σ,A) to E, cf. Figure 3.6, which is a
subset of Σ. Therefore, it is easy to conclude that there is a non zero (ε̇p,−α̇) at
each (σ,A) ∈ ∂E whereas NE(σ,A) = {(0, 0)} if (σ,A) ∈ E̊. In particular, then,
at regular points (σ,A) of the boundary ∂E the normal cone NE(σ,A) reduces
to the one dimensional set spanned by the outward normal at (σ,A), whereas at
nonsmooth boundary points NE(σ,A) is a nontrivial cone, cf. Figure 3.6.

The evolution laws given as in (3.15) are usually described as hypothesis of
normal dissipation or associativity of the plastic model.

Remark 3.1. By definition of subdifferential, equation (3.15) can be interpreted as
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the following time inequality

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Given: (σ, A)

Find: (ε̇p, −α̇)

Such That:

ϕ∗(τ ,B) − ϕ∗(σ,A) ≥ (τ − σ) : ε̇p − (B − A) : α̇ ∀ (τ ,B) ∈ E.

(3.16)

Since ϕ∗(τ ,B) = IE, then (3.16) reads as

σ : ε̇p − A : α̇ ≥ τ : ε̇p − B : α̇ ∀ (τ ,B) ∈ E, (3.17)

which is an extension of the principle of maximum plastic dissipation, well known
in perfect plasticity (Hill, 1950), for the class of materials with hardening.

Remark 3.2. For implementation purposes, one usually resorts to an equivalent
formulation of (3.15) given by (Simo & Hughes, 1998; de Souza Neto et al., 2002)

−ε̇p + λ
∂f

∂σ
(σ,A) = 0

−α̇ − λ
∂f

∂A
(σ,A) = 0

λ ≥ 0, λf(σ,A) = 0, f(σ,A) ≤ 0 (3.18)

which is complemented by the consistency condition

λḟ(σ,A) = 0,

where λ is called plastic multiplier.
The equations (3.18) are often referred to as the Kuhn-Tucker conditions (Lu-

enberger, 1984) as they express the optimality conditions for the solution of the
maximum plastic dissipation principle described by (3.17).

For our subsequent developments, likewise for the state equations, the evolu-
tion laws are recast into an equivalent formulation (Germain et al., 1983; Ladevèze,
1999) which exploits the convexity of the model,

ϕ(ε̇p,−α̇) + ϕ∗(σ,A) − σ : ε̇p + A : α̇
︸ ︷︷ ︸

dη2
x,t(σ,A; ε̇p,α̇)

= 0 ⇔ (ε̇p,−α̇) ∈ ∂ϕ∗(σ,A) (3.19)

From the properties of the Legendre-Fenchel transform, it follows that for any state
(σ,A; ε̇p,−α̇) ∈ Σ × Σ̇

ϕ(ε̇p, α̇) + ϕ∗(σ,A) − σ : ε̇p + A : α̇ ≥ 0, (3.20)

where the equality holds if and only if (σ,A; ε̇p, α̇) is a solution of (3.15). The proof
of this equivalence follows the same pattern as for the state equations.
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In summary, the constitutive model of standard generalised material is ob-
tained by specifying: (i) by means of the Helmholtz free energy the equations of
state of the material, which comprise a relationship between the current value of the
independent state variables and their conjugates, and (ii) by means of the dissipation
potential the evolution laws, which describe the time evolution of the independent
internal variables by means of differential inclusions and confer heredity property to
the material behaviour (Germain et al., 1983; Besson et al., 2001).

Finally, for the quasi-static process where inertial effects are neglected, the ini-
tial conditions for the variables appearing in rate form have to be given to complete
the initial boundary value problem. These are given by

εp(x, t = 0) = ε
p
0(x) and α(x, t = 0) = α0(x) (3.21)

3.2.4.5 Examples of standard rate independent plasticity models

In this section, we present two examples of standard rate independent plasticity
models. The first one is a plasticity model with isotropic hardening whereas the
second one is a model with isotropic-kinematic hardening.

The state laws (3.7) and the evolution laws (3.19) for the internal variables
are formulated within the framework of convex analysis presented in the previous
section. For the evolution laws, in particular, given the associativity of the model,
it will be sufficient to specify only the elastic domain E ⊆ Σ, for the dual of the
dissipation potential is then the indicator function of E.

The Prandtl–Reuss plasticity model with linear elasticity
The Prandtl–Reuss plasticity model is a standard model obtained by using the Von
Mises yield criterion and an isotropic hardening law (Besson et al., 2001). The
internal variables are the plastic strain tensor εp and the accumulated plastic strain
p, while the conjugate variables are σ and R, respectively.

State Laws

Linear Elasticity
The model of linear elasticity is obtained by introducing the free elastic potential

ψe(ε
e) =

1

2
Cεe : εe (3.22)

with C being a second order positive definite tensor, namely the Hooke tensor. The
complementary free energy then follows as

ψ?
e(σ) =

1

2
C

−1σ : σ, (3.23)

which is defined as the Legendre transform of (3.22).
The pair (σ, εe) is said to define a model of linear elasticity if (see equation

(3.7)1)
ψe(ε

e) + ψ?
e(σ) − σ : εe = 0,
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which, by accounting for (3.22) and (3.23), can also be written as

1

2
(σ − Cεe) : C

−1(σ − Cεe) = 0.

Finally the familiar Hooke law is obtained as (see equation (3.5)1)

σ − Cεe = 0.

Hardening Law
The hardening law is the state equation that relates the internal variables to the
thermodynamically conjugate ones as a result of imposing the requirements of the
second law of thermodynamics. In the following, we give the details on how to com-
pute the Legendre–Fenchel transform of the free plastic energy for the more general
isotropic hardening law. In particular, it will be concluded that the Legendre–
Fenchel transform reduces to the Legendre transform.

Let g(p) be a positive and increasing scalar function of the accumulated plastic
strain p with g(p = 0) = 0. The free plastic energy is defined as

ψp(p) =

∫ p

0

g(ε)dε

and is a strictly convex function.
The Legendre-Fenchel transform of ψp(p) is given by

ψ?
p(R) = sup

p≥0
{Rp− ψp(p)}.

For given R ≥ 0, solve for p̄ such that

Rp̄− ψp(p̄) = sup
p≥0

{Rp− ψp(p)}.

Since F (p) = Rp− ψp(p) is differentiable and concave, p̄ is obtained by solving the

equation
dF

dp

∣
∣
∣
∣
p=p̄

= 0, i.e.,

R − g(p̄) = 0, (3.24)

and because of the invertibility of g(p), it follows

p̄ = g−1(R).

Thus, with p̄ ≥ 0, the Legendre–Fenchel transform of ψp(p) is obtained as follows

ψ?
p(R) = F (p̄) = Rg−1(R) − ψp(g

−1(R)),

which is the Legendre transform of ψp(p).
Example 3.2.1: Linear Hardening
Let

g(p) = Hp; ψp(p) =
1

2
Hp2.
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Then equation (3.24) writes as

R− Hp̄ = 0; p̄ =
R

H
.

Hence,

ψ?
p(R) = R

R

H
− 1

2
H

(
R

H

)2

=
1

2H
R2.

Thus, in summary, the hardening law can be defined in one of the following equiva-
lent expressions, (3.7)2 and (3.5)2,

Given: ψp(p) =
1

2
Hp2; ψ?

p(R) =
1

2H
R2

∣
∣
∣
∣
∣
∣
∣

ψp(p) + ψ?
p(R) −Rp = 0 ⇔

1

2H
(R− Hp)2 = 0 ⇔ R− Hp = 0.

Evolution Laws

Given the closed convex elastic domain,

E = {(σ, R)
∣
∣
∣‖σD‖ − (R +R0) ≤ 0, R ≥ 0},

the dual of the dissipation potential for this standard model is the indicator function
of E,

ϕ?(σ, R) = IE.

The Legendre-Fenchel transform of ϕ?(σ, R), which represents the dissipation po-
tential, is therefore the support function of E defined as

ϕ(ε̇p,−ṗ) = sup
(σ,R)∈E

{σ : ε̇p − Rṗ},

which can be transformed in the following form (Ladevèze, 1999; Han & Reddy,
1999)

ϕ(ε̇p,−ṗ) = R0‖ε̇p‖ + IC (3.25)

with IC being the indicator function of the following closed convex set

C = {(ε̇p,−ṗ)
∣
∣
∣ ‖ε̇p‖ − ṗ ≤ 0 and Tr[ε̇p] = 0 }.

Proof. Consider

sup
(σ,R)∈E

{

σ : ε̇p − Rṗ
}

= sup
‖σD‖ − (R0 + R) ≤ 0

R ≥ 0

{

σD : ε̇p +
1

3
Tr[σ]Tr[ε̇p] − Rṗ

}

Using the Schwarz’s inequality and noting that the constraint involves only the norm
of ‖σD‖ and not its direction, in the search for the supremum we can equivalently
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consider only the stress tensors σ such that their deviatoric part maximizes σD : ε̇p,
that is,

sup
‖σD‖ − (R0 + R) ≤ 0

R ≥ 0

{

σD : ε̇p +
1

3
Tr[σ]Tr[ε̇p] − Rṗ

}

=

= sup
‖σD‖ − (R0 + R) ≤ 0

R ≥ 0

{

‖σD‖‖ε̇p‖ +
1

3
Tr[σ]Tr[ε̇p] −Rṗ

}

Let
f = ‖σD‖ − (R0 +R)

with the constraint that f ≤ 0, it is also

sup
‖σD‖ − (R0 + R) ≤ 0

R ≥ 0

{

‖σD‖‖ε̇p‖ +
1

3
Tr[σ]Tr[ε̇p] − Rṗ

}

=

= sup
‖σD‖ − (R0 + R) ≤ 0

R ≥ 0

{

R(‖ε̇p‖ − ṗ) + f‖ε̇p‖ +R0‖ε̇p‖ +
1

3
Tr[σ]Tr[ε̇p]

}

and by using simple properties of the supremum (Hiriart-Urruty & Lemaréchal,
2001) it follows also

ϕ(ε̇p,−ṗ) = R0‖ε̇p‖ + sup
f≤0

f‖ε̇p‖ + sup
R≥0

R(‖ε̇p‖ − ṗ) + sup
Tr[σ]∈R

1

3
Tr[σ]Tr[ε̇p],

that is,
sup
f≤0

f‖ε̇p‖ = 0,

sup
R≥0

R(‖ε̇p‖ − ṗ) =







0 if ‖ε̇p‖ − ṗ ≤ 0
,

∞ if ‖ε̇p‖ − ṗ > 0

sup
Tr[σ]∈R

1

3
Tr[σ]Tr[ε̇p] =







0 if Tr[ε̇p] = 0
,

∞ if Tr[ε̇p] 6= 0

which finally delivers (3.25).

Thus, we say that the set (σ(x, t), R(x, t); εp(x, t), p(x, t)) satisfies the evo-
lution law at the point x ∈ Ω if the following differential problem is satisfied

∀ t ≤ T,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

‖σD(x, t)‖ −
[
R0 +R(x, t)

]
≤ 0

‖ε̇p(x, t)‖ − ṗ(x, t) ≤ 0

Tr[ε̇p(x, t)] = 0

R0‖ε̇p(x, t)‖ − σ(x, t) : ε̇p(x, t) +R(x, t)ṗ(x, t) = 0
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The standard Marquis–Chaboche modified plasticity model with Linear
Elasticity
The non–associated Marquis–Chaboche plasticity model has been modified into an
associated model by Ladèveze & Rougee (1984) and Coffignal (1987). The model
accounts for both isotropic and kinematic hardening. The internal variables are,
therefore, the plastic strain tensor εp, the accumulated plastic strain p and a second
order symmetric tensor α with zero trace. The conjugate variables are σ, R, X,
respectively. The position of the elastic domain in the space of the generalised
stresses is controlled by the internal variable X whereas its amplitude by R.

State Laws

The free elastic and complementary potential are, as usual, given by

ψe(ε
e) =

1

2
Cεe : εe;

ψ?
e(σ) =

1

2
C

−1σ : σ,

whereas the free plastic potential and its Legendre transform are

ψp(α, p) =
1

2
Λα : α +

∫ p

0

g(ε)dε;

ψ?
p(X, R) =

1

2
Λ−1X : X + [Rg−1(R) −

∫ g−1(R)

0

g(ε)dε],

where Λ is a second order positive definite tensor, and g(p) is the same as defined
for the previous Prandtl–Reuss plasticity model.

The state equations can therefore be equivalently expressed as follows

ψe(ε
e) + ψ?

e(σ) − σ : εe = 0 ⇔ σ − Cεe = 0

ψp(α, p) + ψ?
p(X, R) −

{
X : α +Rp

}
= 0 ⇔

∣
∣
∣
∣
∣

R − g(p) = 0

X −Λα = 0

Evolution Laws

The closed convex elastic domain of this model is defined as follows

E = {(σ,X, R)
∣
∣
∣‖σD − X‖ +

a

2c
‖X‖2 − (R +R0) ≤ 0, R ≥ 0},

where a ≥ 0, c > 0 are material constants. For the standard formulation of the
evolution laws, the dual of the dissipation potential is obtained by setting

ϕ?(σ,X, R) = IE.
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The Legendre–Fenchel transform of ϕ?(σ,X, R) is therefore the support function of
the domain E,

ϕ(ε̇p,−α̇,−ṗ) = sup
(σ,R,X)∈E

{
σ : ε̇p − Rṗ− X : α̇

}
(3.26)

which can be given by the following explicit expression

ϕ(ε̇p,−α̇,−ṗ) =







R0‖ε̇p‖ +
c

2a

‖ε̇p − α̇‖2

‖ε̇p‖ + ψC if ε̇p 6= 0,

IC if ε̇p = 0, α̇ = 0,

∞ if ε̇p = 0, α̇ 6= 0,

(3.27)

with the domain C given in the Prandtl–Reuss plasticity model.

Proof. Following arguments similar to the one shown in the Prandtl–Reuss model,
we obtain

ϕ(ε̇p,−α̇,−ṗ) = sup
(σ,R,X)∈E

{
σ : ε̇p − Rṗ− X : α̇

}
=

= sup
(σ,R,X)∈E

{
(σD − X + X) : ε̇p +

1

3
Tr[σ]Tr[ε̇p] − Rṗ− X : α̇

}
=

= sup
(σ,R,X)∈E

{
(σD − X) : ε̇p +

1

3
Tr[σ]Tr[ε̇p] − Rṗ+ X : (ε̇p − α̇)

}
=

= sup
(σ,R,X)∈E

{
‖σD − X‖‖ε̇p‖ +

1

3
Tr[σ]Tr[ε̇p] − Rṗ+ ‖X‖‖ε̇p − α̇‖

}
=

= sup
R ≥ 0, ‖X‖ ≥ 0
Tr[σ] ∈ R, f ≤ 0

{

R(‖ε̇p‖ − ṗ) + f‖ε̇p‖ +R0‖ε̇p‖ +
1

3
Tr[σ]Tr[ε̇p]+

+‖X‖‖ε̇p − α̇‖ − a

2c
‖X‖2‖ε̇p‖

}

,

where we have let
f = ‖σD − X‖ +

a

2c
‖X‖2 − (R +R0)

and made use of the Schwarz’s inequality.
Since the variables may vary independently on each other, it follows

ϕ(ε̇p,−α̇,−ṗ) = R0‖ε̇p‖ + sup
R≥0

{
R(‖ε̇p‖ − ṗ)

}
+ sup

Tr[σ]∈R

1

3
Tr[σ]Tr[ε̇p]+

+sup
f≤0

f‖ε̇p‖ + sup
‖X‖≥0

{
‖X‖‖ε̇p − α̇‖ − a

2c
‖X‖2‖ε̇p‖

}
.
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As for the last term, we note

sup
‖X‖≥0

{
‖X‖‖ε̇p − α̇‖ − a

2c
‖X‖2‖ε̇p‖

}
=







c

2a

‖ε̇p − α̇‖2

‖ε̇p‖ if ε̇p 6= 0,

IC if ε̇p = 0, α̇ = 0,

∞ if ε̇p = 0, α̇ 6= 0,

whereas for the other terms the same considerations as expressed for the Prandtl–
Reuss model hold, so that finally, the expression (3.27) is obtained.

3.3 Contractivity of the elastoplastic flow

Object of this section is to show the contractivity of the elastoplastic flow for stan-
dard generalised materials described by a quadratic Helmholtz energy. For the more
general case of strongly convex energy, we refer to Laborde & Nguyen (1990) where,
however, the Lipschitz property of the elastoplastic flow with respect to the initial
data is shown to hold.

Denote by (σ,A; ε, εp,α) the solution of the following problem
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

〈σ,∇η〉 = 〈b,η〉 + 〈t,η〉∂Ωt ∀η ∈ V0

ε = εe + εp

σ = Cεe

A = Hα

(ε̇p,−α̇) ∈ ∂ϕ?(σ,A)

εp(t = 0) = ε
p
0

α(t = 0) = α0

and by (σ̃, Ã; ε̃, ε̃p, α̃) the solution of the same problem but with initial state given
by ε̃

p
0, α̃0. The monotony of the operator ∂ϕ?, which is the subdifferential of a

convex function§, gives

(σ − σ̃) : (ε̇p − ˙̃εp) − (A − Ã) : (α̇ − ˙̃α) ≥ 0,

that is,
(σ − σ̃) : (ε̇e − ˙̃εe) + (A − Ã) : (α̇ − ˙̃α) ≤ 0, (3.28)

where we have accounted for the additivity of the total strain and the equality

(σ − σ̃) : (ε̇ − ˙̃ε) = 0,

§Let V be a real Banach space and V? its dual. If f is a lower semicontinuous proper convex
function on V , then ∂f : v ∈ V → ∂f(v) ∈ 2V

?

is a maximal cyclically monotone operator. The
monotone cyclically operator property follows easily from the definition of subdifferential. For
proving the maximality of the operator, refer to Rockafellar (1970b).
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since σ − σ̃ is self equilibrated and ε − ε̃ corresponds to the difference of two
kinematically admissible displacement fields for the same problem.

By accounting for the state equations in (3.28), it follows

d

dt

[

C(εe − ε̃e) : (εe − ε̃e) + H(α − α̃) : (α − α̃)
]

≤ 0,

which shows that the time dependent function

C(εe(t) − ε̃e(t)) : (εe(t) − ε̃e(t)) + H(α(t) − α̃(t)) : (α(t) − α̃(t))

is nonincreasing with time, thus

C(εe(t) − ε̃e(t)) : (εe(t) − ε̃e(t)) + H(α(t) − α̃(t)) : (α(t) − α̃(t)) ≤

≤ C(εe
0 − ε̃e

0) : (εe
0 − ε̃e

0) + H(α0 − α̃0) : (α0 − α̃0) ∀t ≥ 0,

which expresses the contractivity of the elastoplastic flow with respect to the norm
associated with the Helmholtz energy. In the following section, we show how this
property allows the use of the time accumulated residual as indication of the error
in solution.

3.4 Residual versus Error in Solution

For the considerations in this section, we basically follow Eriksson et al. (1996),
which we refer to for further details.

Consider the scalar initial value problem,
∣
∣
∣
∣
∣

u̇(t) + a(t)u(t) = f(t) t ∈ [0, T ]

u(0) = u0

(3.29)

with a(t) ≥ 0.
The solution of (3.29) is given by

u(t) = exp[−A(t)]u0 +

∫ t

0

exp[−(A(t) − A(τ))]f(τ) dτ (3.30)

where A(t) =

∫ t

0

a(τ)dτ , so that the following a priori estimate can be easily ob-

tained

|u(t)| ≤ |u0| +
∫ t

0

|f(τ)| dτ ∀ t ≤ T, (3.31)

for the nondecreasing character of A = A(t).
Let 0 = t1 < . . . < tn < . . . < tN+1 = T be a partition of the time interval

[0, T ] of interest and consider a function U = U(t) to be approximation of the
problem (3.29), which is differentiable over the intervals [tn, tn+1]. The function
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U = U(t) may have jump discontinuities at the time instants tn, thus we let U(t+n )−
U(t−n ) = ∆n. For n = 1, we assume U(t−1 ) = u0, thus ∆1 = U0 − u0. This means
that U = U(t) is solution of the following problem

∣
∣
∣
∣
∣
∣
∣
∣

For n = 1, . . . , N

U̇(t) + a(t)U(t) = f(t) +R(t) t ∈ [tn, tn+1]

U(t+n ) = U(t−n ) + ∆n

where R = R(t) is the residual produced by U = U(t) within each time interval
[tn, tn+1] where U = U(t) is differentiable.

The error e(t) = u(t) − U(t) associated with the approximation U = U(t) is,
therefore, solution of the following problem

∣
∣
∣
∣
∣
∣
∣
∣

For n = 1, . . . , N

ė(t) + a(t)e(t) = R(t) t ∈ [tn, tn+1]

e(tn) = ∆n.

(3.32)

Using for each subinterval [tn, tn+1] the result given in (3.30), we obtain

e(t) =

N∑

n=1

exp[−A(t− tn)]∆nβn +

∫ t

0

exp[−(A(t) − A(τ))]R(τ) dτ (3.33)

where

βn =

{
0 if t ≤ tn
1 if t > tn.

In equation (3.33) the term

exp[−A(t− tn)]∆nβn

gives the propagation at t(≥ tn) of the discontinuity jump ∆n in the approximate
solution U = U(t), whereas

∫ t

0

exp[−(A(t) − A(τ))]R(τ)dτ

can be interpreted as the sum of the time–elemental contributions to the total error
at the time t. The time–elemental contributions are obtained by the propagation
at time t of the residual error R(τ)dτ produced within the time–elemental interval
[τ, τ + dτ ] at time τ ≤ t.

Remark 3.3. Equation (3.33) shows the influence of the jump discontinuities on
the error. Also, note that for a continuous approximation solution U = U(t), that is,
∆n = 0, for n = 1, . . . , N , the error depends only on the residual produced within
the time intervals where the approximation is differentiable.
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Applying (3.31) and the triangular inequality, we obtain the following a priori
estimate of the solution (3.33),

|e(t)| ≤
N∑

n=1

|∆n|βn +

∫ t

0

|R(τ)| dτ ∀ t ≤ T, (3.34)

which shows the accumulation in time of the jump discontinuities and of the residual
as indication of the pointwise error. From (3.34), it is immediate to obtain also the
following global estimate in time,

sup
t≤T

|e(t)| ≤
N∑

n=1

|∆n| +
∫ T

0

|R(τ)| dτ. (3.35)

Remark 3.4. If R(t) = 0, ∀t ∈ [tn, tn+1], ∀n, that is, the approximate solution U(t)
does satisfy exactly equation (3.29) over each time interval [tn, tn+1], the second term
on the r.h.s. of equation (3.33) disappears and the error is due to the occurrence of
the jumps in U = U(t) across the time nodes tn. Finally, this means that the error
of the approximate solution U = U(t) is related to the error in the initial data over
each time interval.

The property of problem (3.29), which has allowed development of an estimate
in terms of the jumps and of the residual such as (3.35), is its dissipativity resulting
from a(t) ≥ 0. Dissipativity is represented by the contraction of the solution with
respect to the initial state, i.e.,

∣
∣
∣u(t) − Ũ(t)

∣
∣
∣ ≤

∣
∣
∣u0 − Ũ0

∣
∣
∣

where Ũ = Ũ(t) denotes now a solution of problem (3.29) with the same f = f(t)
but different initial state Ũ0.

The contractivity of the elastoplastic flow is enjoyed by the standard gener-
alised materials described by a quadratic Helmholtz energy as shown in the previous
section. This, therefore, suggests the use of an error estimate (3.35) for the afore-
mentioned class of problems.

Remark 3.5. The link between residual and error is well known in linear algebra.
The residual of an approximate solution of the linear system, Ax = b, influences the
error in solution not only by the residual size but also by the condition number of
the system matrix. For those problems which have a condition number not greater
than one the residual of the approximate solution can be assumed as an estimate
of its error (Stewart, 1973; Estep et al., 2000). In fact, we have the following result
(Stewart, 1973)

Theorem. Let A be nonsingular, Ax = b 6= 0, and Ax̃ = b + r. Then

‖x − x̃‖
‖x‖ ≤ κ(A)

‖r‖
‖b‖

where κ(A) = ‖A‖‖A−1‖ is the condition number of A and r is the residual asso-
ciated with the approximation x̃ of the linear system Ax = b.
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3.4.1 A simple a posteriori error estimate via discrete en-

ergy dissipation

In this Section we develop a simple a posteriori error estimate of the discretization
error obtained by solving an ordinary differential equation of the first order with
the backward Euler method. This technique extends the one developed by Nochetto
et al. (2000) for a posteriori error estimation of the backward Euler approximations
of abstract evolution equations in Hilbert space. In Nochetto et al. (2000) it is
assumed that U−

n = U+
n , whereas in what follows, this hypothesis is removed. The

meaning of the notation is kept the same as in the previous Section. Also, we assume
that u(t) and F(u) are scalar functions.

The theory is presented for the model problem

∣
∣
∣
∣
∣
∣
∣
∣

Find: u = u(t)

u̇(t) + F(u) = 0

u(t = 0) = u0

(3.36)

where F(u) is assumed to admit a convex potential φ = φ(u), that is,

F(u) =
d

du
φ(u). (3.37)

For the problem (3.29), for example, φ(u) =
1

2
au2.

The use of the backward Euler method as time discretization scheme of (3.36)
gives

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

For n = 1, . . . , N

Data: U+
n

Find: U−
n+1

U−
n+1 − U+

n

kn

+ F(U−
n+1) = 0

(3.38)

where kn+1 = tn+1 − tn and the data U+
n of the algebraic equation relative to the

time step [t+n , t
−
n+1] is assumed to be different from the solution U−

n of the previous
time step.

From the definition of differential given in note (†) of Section 3.2.4.3, problem
(3.36) is equivalent to the following evolution variational inequality,

∣
∣
∣
∣
∣
∣

Find: u = u(t)

〈u̇(t), u(t) − v(t)〉 + φ(u(t)) − φ(v(t)) ≤ 0, ∀v(t) ∈ C0(0, T )
(3.39)

where C0(0, T ) is the space of the continuous functions over [0, T ]. Hence, the
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problem (3.38) is equivalent to the inequality

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

For n = 1, . . . , N

Data: U+
n

Find: U−
n+1

1

kn+1
〈U−

n+1 − U+
n , U

−
n+1 − v〉 + φ(U−

n+1) − φ(v) ≤ 0, ∀v ∈ R.

(3.40)

Hereafter, U = U(t) is the discontinuous function obtained as piecewise linear
interpolant of the values U+

n and U−
n+1 over each time step [tn, tn+1] for n = 1, . . . , N .

The error estimate given in Nochetto et al. (2000) is related to the amount
of energy dissipation associated with U = U(t) and it is obtained by exploiting the
Lyapunov properties of φ = φ(t), which decreases along solution paths of both (3.36)
and (3.38). In fact, it is known that φ satisfies the energy identity (Eriksson et al.,
1996)

|u̇(t)|2 +
d

dt
φ(u(t)) = 0, a.e. t ∈ [0, T ] (3.41)

and the discrete energy inequality

−En+1
def
=

∣
∣
∣
∣

U−
n+1 − U+

n

kn+1

∣
∣
∣
∣

2

+
φ(U−

n+1) − φ(U+
n )

kn+1
≤ 0, ∀0 ≤ n ≤ N, (3.42)

which follows directly from (3.40) upon choosing v = U+
n . The discrete quantity

En+1 in (3.42) is thus a measure of the residual produced by U = U(t) in the energy
equation (3.41).

An a posteriori error bound for the solution (3.40) can be computed as follows

max
t∈[0,tN+1]

|u(t) − U(t)| ≤
N∑

n=0

kn+1

√

En+1 +
N∑

n=1

∣
∣U−

n − U+
n

∣
∣+ |U0 − u0| , (3.43)

where the estimate depends on both En+1 and |U−
n − U+

n |, with the latter vanishing
in the classical use of the backward Euler.

Proof. The linear interpolant U = U(t) over [tn, tn+1] is given by

U(t) =
t− tn

kn+1
U−

n+1 +
tn+1 − t

kn+1
U+

n .

Thus,

U̇(t) =
U−

n+1 − U+
n

kn+1
, ∀ t ∈ [tn, tn+1].

As a result, it follows

1

kn+1

〈U−
n+1 − U+

n , U
−
n+1 − v〉 = 〈U̇ , U − v〉 − 〈U̇ , U − U−

n+1〉.

69



Hence, equation (3.40) can be re–written as

〈U̇ , U − v〉 + φ(U) − φ(v) ≤ 〈U̇ , U − U−
n+1〉 + φ(U) − φ(U−

n+1)
︸ ︷︷ ︸

R

which resembles equation (3.39). The next step is to estimate R. With this regard,
note that

U − U−
n+1 = (t− tn+1)U̇

and for the convexity of φ, it follows

φ(U) ≤ t− tn

kn+1

φ(U−
n+1) +

tn+1 − t

kn+1

φ(U+
n ).

Hence,

φ(U) − φ(U−
n+1) ≤ (t− tn+1)

φ(U−
n+1) − φ(U+

n )

kn+1
.

Thus,

R ≤ (t− tn+1)〈U̇ , U̇〉 + (t− tn+1)
φ(U−

n+1) − φ(U+
n )

kn+1
= (t− tn+1)En+1,

where En+1 has been defined in (3.42). Therefore, equation (3.40) can be written as
follows

〈U̇ , U − v〉 + φ(U) − φ(v) ≤ (t− tn+1)En+1, ∀ v ∈ R.

For v = U , one obtains

〈U̇ , U − u〉 + φ(U) − φ(u) ≤ (t− tn+1)En+1,

whereas equation (3.39) for v = U gives

〈u̇, u− U〉 + φ(u) − φ(U) ≤ 0.

Summing up the last two inequalities delivers

〈u̇− U̇ , u− U〉 ≤ (t− tn+1)En+1, a.e. t ∈ [tn, tn+1],

which can also be written as

1

2

d

dt
|u(t) − U(t)|2 ≤ (t− tn+1)En+1, a.e. t ∈ [tn, tn+1].

Integration over the time step under consideration delivers
∣
∣u(tn+1) − U−

n+1

∣
∣2 ≤ k2

n+1En+1 +
∣
∣U+

n − u(tn)
∣
∣2

that is,§

∣
∣u(tn+1) − U−

n+1

∣
∣ ≤ kn+1

√

En+1 +
∣
∣U+

n − u(tn)
∣
∣ ≤

≤ kn+1

√

En+1 +
∣
∣U+

n − U−
n

∣
∣+
∣
∣U−

n − u(tn)
∣
∣

and by induction one finally obtains (3.43).

§If a2 ≤ b2 + c2, with b, c ≥ 0, then it is b2 + c2 ≤ (b + c)2, thus it follows a ≤ b+ c.
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3.5 Admissible solution and measure of the error

In section 3.2 we have described the properties and equations that define the be-
haviour of the standard generalised material model, which for the reader’s conve-
nience are summarized in Box 3.1.

We assume that the problem of computing the response of such model to given
external actions is posed in the set of functions, (σ(x, t),A(x, t); ε(x, t), εp(x, t),
α(x, t)), which gives a finite value to the global energy

∫

Ω

sl
e η

2
x,t(σ; εe) dΩ +

∫

Ω

sl
p η

2
x,t(A; α) dΩ +

∫

Ω

∫ T

0

dη2
x,t(σ,A; ε̇p, α̇) dt dΩ < ∞.

Also, we assume that the formulation is such that the problem has a solution
which is unique.

In this class of functions, we distinguish a subset given by those functions
which satisfy only some properties and equations given in Box 3.1. Any element of
this set is referred to, in general, as an admissible solution. It is, therefore, clear
that an admissible solution is the exact solution if and only if also the remaining
equations are satisfied. If in the conditions defining the admissible solutions all
the qualitative properties are included, the approximation quality of an admissible
solution is described by the residual, which is produced in the equations defining
the admissible subset.

Given the dissipative character of the problem under consideration, as shown
in Section 3.3, and following from arguments given in Section 3.4, a direct measure
of the residual can be used as an indication of the error associated with the problem.

The notion of error in the constitutive equations for non linear problems as
introduced by Ladéveze et al. (1986) implements the above ideas by splitting the
equations that govern the behaviour of the continuum in two groups: One group
is used to define an admissible solution and combines the kinematic compatibility
conditions, the additivity of the strain tensor, the equilibrium equations and the
initial conditions. The second group comprises, on the other hand, the constitutive
equations and is used to quantify the approximation of the admissible solution by
means of the residual produced therein. As far as the measure of this residual is con-
cerned, this depends on the type of constitutive formulation which is adopted. In the
constitutive formulation with internal variables we exploit the convexity structure
of the state laws and evolution laws, as described in Section 3.2.4, by referring to
equivalent scalar formulations of the tensorial constitutive equations. These equiv-
alent formulations, in turn, can be interpreted as offset of the energetic balance
which is not met by the admissible solution. The notion of dissipation error and
extended dissipation error are in this way introduced according to whether or not we
include the state laws in the conditions that define the admissibility of a solution,
respectively.
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Box 3.1. Initial Boundary Value Problem for Standard Generalised Models

with Internal Variables

Find σ(x, t),A(x, t); u(x, t), ε(x, t), εp(x, t),α(x, t)
such that the following conditions are satisfied:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Kinematic Compatibility:

Continuity of the Displacement Field, u(x, t).

Time continuity of the Total Strain, ε(x, t) = ∇su(x, t).

Time continuity of the Plastic Strain, εp(x, t).

Time continuity of the Internal Variables, α(x, t).

Displacement Boundary Conditions.

∣
∣
∣
∣
∣
∣
∣
∣

Additivity of the Strain Tensor:

ε(x, t) = εe(x, t) + εp(x, t),

∀x ∈ Ω, ∀ t ∈ [0, T ].

∣
∣
∣
∣
∣
∣
∣
∣

Equilibrium:

〈σ(x, t),∇η(x)〉 = 〈b(x, t),η(x)〉+ 〈t(x, t),η(x)〉∂Ωt

∀η ∈ V0, ∀ t ∈ [0, T ].

∣
∣
∣
∣
∣
∣
∣
∣
∣

Initial Conditions:

εp(x, t = 0) = 0,
∀x ∈ Ω

α(x, t = 0) = 0,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

State Laws:

ψe(ε
e(x, t)) + ψ∗

e(σ(x, t)) − σ(x, t) : εe(x, t) = 0,

ψp(α(x, t)) + ψ∗
p(A(x, t)) − A(x, t) : α(x, t) = 0,

∀x ∈ Ω, ∀ t ∈ [0, T ].

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Evolution Laws:

ϕ(ε̇p(x, t),−α̇(x, t)) + ϕ∗(σ(x, t),A(x, t))+

−σ(x, t) : ε̇p(x, t) + A(x, t) : α̇(x, t) = 0,

∀x ∈ Ω, ∀ t ∈ [0, T ].
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If a functional formalism is adopted for the constitutive modelling, for ma-
terials that strictly follow the conditions of Drucker stability (Drucker, 1964) the
notion of Drucker’s error is introduced (Ladéveze et al., 1986; Coffignal, 1987; Gal-
limard, 1994). Here, the Drucker’s inequality is used to quantify the quality of the
admissible solution, which is not required to satisfy the constitutive equations.

The violation of a qualitative property, on the other hand, such as time con-
tinuity, for instance, requires a more specific treatment and this will be object of a
further subsection.

3.5.1 Error in the constitutive equations for time continuous
admissible solution

Throughout this section, in the definition of the admissible conditions we will always
consider functions which are time continuous over the time interval of interest. In
order to be more specific in the treatment, in the following the internal variables
are denoted as p and α to indicate scalar and tensorial quantities, respectively. The
associated thermodynamic forces are thus referred to as R and X, respectively.

3.5.1.1 Dissipation Error

This measure of the error has been introduced for the first time by Ladevèze (1989)
within the context of the LATIN method applied to the solution of the initial bound-
ary value problem of a material model formulated with internal variables. Its nu-
merical performance has been assessed in Moës (1996); Ladevèze & Moës (1997) and
Ladevèze & Moës (1999).

Definition of the Admissibility Conditions

The dissipation error is the error in the constitutive equations for a formulation
with internal variables obtained by including the state laws in the definition of
the admissibility conditions. More precisely, the field (σad(x, t),Xad(x, t), Rad(x, t);
uad(x, t), εad(x, t), ε

p
ad(x, t),αad(x, t), pad(x, t)) is an admissible solution with re-

spect to the computation of the dissipation error if the following conditions are
met:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Kinematic Compatibility:

Continuity of the Displacement Field, uad(x, t).

Time continuity of the Total Strain, εad(x, t) = ∇suad(x, t).

Time continuity of the Plastic Strain, ε
p
ad(x, t).

Time continuity of the Internal Variables, αad(x, t), pad(x, t).

Displacement Boundary Conditions.
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∣
∣
∣
∣
∣
∣
∣
∣

Additivity of the Strain Tensor:

εad(x, t) = εe
ad(x, t) + ε

p
ad(x, t),

∀x ∈ Ω, ∀ t ∈ [0, T ].

∣
∣
∣
∣
∣
∣
∣
∣

Equilibrium:

〈σad(x, t),∇η(x)〉 = 〈b(x, t),η(x)〉+ 〈t(x, t),η(x)〉∂Ωt

∀η ∈ V0, ∀ t ∈ [0, T ].

∣
∣
∣
∣
∣
∣
∣
∣
∣

Initial Conditions:

ε
p
ad(x, t = 0) = 0,

∀x ∈ Ω
αad(x, t = 0) = 0, pad(x, t = 0) = 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

State Laws:

ψe(ε
e
ad(x, t)) + ψ∗

e(σad(x, t)) − σad(x, t) : εe
ad(x, t) = 0,

ψp(αad(x, t), pad(x, t)) + ψ∗
p(Xad(x, t), Rad(x, t))+

−
[

Xad(x, t) : αad(x, t) +Rad(x, t)pad(x, t)
]

= 0,

∀x ∈ Ω, ∀ t ∈ [0, T ].

Definition of Error

The only equation which in general is not satisfied by an admissible solution is
therefore the evolution law. The quality of its approximation does then depend
upon the residual produced therein. A natural way to measure this residual is
obtained by resorting to a scalar equivalent formulation of the evolution law due to
the convexity nature of the law. This formulation is discussed in Section 3.2.4.4 and
especially notable are its properties (3.19) and (3.20). As a result, it is quite natural
to assume the following definition of an error

e2dis(T ) = 2

∫

Ω

∫ T

0

dη2
x,t(σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) dt dΩ (3.44)

where we have let

dη2
x,t(σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) =

= ϕ?(σad(x, t),Xad(x, t), Rad(x, t)) + ϕ(ε̇p
ad(x, t),−α̇ad(x, t),−ṗad(x, t)) +

−σad(x, t) : ε̇
p
ad(x, t) + Xad(x, t) : α̇ad(x, t) +Rad(x, t)ṗad(x, t)

and we recall, once again, that the state laws are satisfied by the admissible solution.
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Remark 3.6. Equation (3.44) defines the global error at time T as a sum of elemen-
tal contributions arising from the unaltered propagation at t of the error produced
by the residual dη2

x,tdΩdτ within dΩ and [τ, τ + dτ ] at time τ ≤ t. This is in agree-
ment with the dissipative nature of the problem under consideration as discussed in
Section 3.3 and Section 3.4.

If we denote by

sad(x, t) =
(

σad(x, t),Xad(x, t), Rad(x, t); εad(x, t), ε
p
ad(x, t),αad(x, t), pad(x, t)

)

,

and

sex(x, t) =
(

σex(x, t),Xex(x, t), Rex(x, t); εex(x, t), ε
p
ex(x, t),αex(x, t), pex(x, t)

)

,

an admissible and the exact solution of the initial boundary value problem, respec-
tively, the definition (3.44) can be assumed as a global measure of the error of the
(kinematic) admissible solution in the following sense:

Theorem 3.1.
Given an admissible solution sad = sad(x, t) with respect to the computation

of the dissipation error, it follows

e2dis(T ) ≥ 0

e2dis(T ) = 0 ⇐⇒ sad(x, t) = sex(x, t) ∀x ∈ Ω, ∀ t ≤ T.

Proof. Because of the properties of the Legendre-Fenchel inequality, it follows that
dη2

x,t ≥ 0 and dη2
x,t = 0 if and only if the admissible solution does satisfy the

evolution law at time t. As a result, e2dis(t) is a non negative increasing scalar
function. Therefore if e2dis(T ) = 0, it is also e2dis(t) = 0 ∀ t ≤ T , which then means
that sad(x, t) does satisfy the evolution law ∀x ∈ Ω, ∀ t ≤ T , i.e., sad(x, t) =
sex(x, t) ∀x ∈ Ω, ∀ t ≤ T .

Remark 3.7. The dissipation error e2dis(T ) is finite if and only if

(σad, Xad, Rad) ∈ domϕ? ∀x ∈ Ω, ∀t ≤ T

(ε̇p
ad, α̇ad, ṗad) ∈ domϕ ∀x ∈ Ω, ∀t ≤ T

where dom stands for the effective domain of the function. These conditions are
easy to impose for a model with linear hardening and linear elasticity in case of
the convex elastic domain. For more general hardening laws, however, the model
is required to be expressed first in normal form as introduced in Ladevèze (1989),
that is, the state laws must be transformed in a linear form. For further details on
the meaning of transformation of internal variables and conditions under which the
above transformation is feasible, we refer to Ladevèze (1999) and Nguyen (2000).
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Finally, note that if we let tn ∈]0, T [, for the additivity of the integral, equation
(3.44) can be also written as

e2dis(T ) = e2dis(tn) + 2

∫

Ω

∫ T

tn

dη2
x,t(σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) dt dΩ (3.45)

which presents the global error at the time T as a sum of the error at the time
tn < T and the error associated with the admissible solution over [tn, T ].

3.5.1.2 Extended Dissipation Error

This error measure has been introduced for the first time in Ladevèze et al. (1999)
and Ladevèze (2001), where an application is given for an elastic-damage coupled
model.

Definition of the Admissibility Conditions

An immediate extension of the dissipation error introduced in the previous sec-
tion is obtained by removing the state laws from the definition of the admissibility
conditions. This allows the recovery of the error in the constitutive equations for
an admissible solution which is elastic, as introduced in Section 2.2.1.2 at page 18.
More precisely, the field (σad(x, t), Xad(x, t), Rad(x, t); uad(x, t), εad(x, t), ε

p
ad(x, t),

αad(x, t), pad(x, t)) is an admissible solution with respect to the computation of the
extended dissipation error if the following conditions are met

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Kinematic Compatibility:

Continuity of the Displacement Field, uad(x, t).

Time continuity of the Total Strain, εad(x, t) = ∇suad(x, t).

Time continuity of the Plastic Strain, ε
p
ad(x, t).

Time continuity of the Internal Variables, αad(x, t), pad(x, t).

Displacement Boundary Conditions.

∣
∣
∣
∣
∣
∣
∣
∣

Additivity of the Strain Tensor:

εad(x, t) = εe
ad(x, t) + ε

p
ad(x, t),

∀x ∈ Ω, ∀ t ∈ [0, T ].

∣
∣
∣
∣
∣
∣
∣
∣

Equilibrium:

〈σad(x, t),∇η(x)〉 = 〈b(x, t),η(x)〉+ 〈t(x, t),η(x)〉∂Ωt

∀η ∈ V0, ∀ t ∈ [0, T ].
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∣
∣
∣
∣
∣
∣
∣
∣
∣

Initial Conditions:

ε
p
ad(x, t = 0) = 0,

∀x ∈ Ω
αad(x, t = 0) = 0, pad(x, t = 0) = 0

Definition of Error

In this case, the equations that are not satisfied by an admissible solution are the
state laws and the evolution laws. Therefore, besides the residual in the evolution
laws for which the same considerations as in the previous section apply, now also
the residual in the state laws must be considered to assess the quality of the ap-
proximation associated with the given admissible solution. A natural measure of
this residual is provided by the equivalent formulation of the state equations which
exploits the convexity properties of the law, as expressed notably by the equations
(3.7) and (3.9). Furthermore, given the nature of the state laws that relate the
current value of the kinematic variables to the corresponding static one, a global
measure of the error is obtained by assuming an L∞ accumulation in time of the
current value of the error in the state laws. Therefore, it is quite natural to assume
the following definition of error

e2ext(T ) = sup
t≤T

{

2

∫

Ω

slη2
x,t(σad, Xad, Rad; εe

ad, αad, pad)dΩ

︸ ︷︷ ︸

θ2
sl

(t)

+

(3.46)

+ 2

∫

Ω

∫ t

0

dη2
x,τ (σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) dτ dΩ

︸ ︷︷ ︸

θ2
d(t)

}

where, in general, the quantity

slη2
x,t(σad, Xad, Rad; εe

ad, αad, pad) =

= ψ∗(σad(x, t),Xad(x, t), Rad(x, t)) + ψ(εe
ad(x, t),αad(x, t), pad(x, t)) +

−
{

σad(x, t) : εe
ad(x, t) + Xad(x, t) : αad(x, t) +Rad(x, t)pad(x, t)

}

is the residual in the state laws, and, likewise to the dissipation error, the term

dη2
x,t(σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) =

= ϕ?(σad(x, t),Xad(x, t), Rad(x, t)) + ϕ(ε̇p
ad(x, t),−α̇ad(x, t),−ṗad(x, t)) +

−σad(x, t) : ε̇
p
ad(x, t) + Xad(x, t) : α̇ad(x, t) +Rad(x, t)ṗad(x, t).

describes the residual produced in the evolution laws.
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Remark 3.8. If we recall the result∗∗,

Given f(t) ≥ 0 ∀ t ≤ T

(sup
t≤T

f(t))
1
2 = sup

t≤T

f
1
2 (t),

we can also write

eext(T ) = sup
t≤T

{

2

∫

Ω

slη2
x,t(σad, Xad, Rad; εe

ad, αad, pad)dΩ

︸ ︷︷ ︸

θ2
sl

(t)

+

+ 2

∫

Ω

∫ t

0

dη2
x,τ (σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) dτ dΩ

︸ ︷︷ ︸

θ2
d
(t)

} 1
2

.

Thus, the extended dissipation error has the form of an L∞ norm in time of an
energy type norm of the error in the state variables.

Definition (3.46) can be assumed as a global measure of the error of the (kinematic)
admissible solution in the following sense:

Theorem 3.2.
Given an admissible solution sad = sad(x, t) with respect to the computation

of the extended dissipation error, i.e., sad is not required to meet the state laws, it
follows

e2ext(T ) ≥ 0

e2ext(T ) = 0 ⇐⇒ sad(x, t) = sex(x, t) ∀x ∈ Ω, ∀ t ≤ T.

Proof. Because of the properties of the Legendre-Fenchel inequality, we recall that
slη2

x,t ≥ 0 and dη2
x,t ≥ 0. Also, slη2

x,t = 0, dη2
x,t = 0 if and only if the given time

continuous admissible solution sad(x, t) satisfies the state laws and the evolution
laws, respectively. As a result, e2ext(T ) appears as supremum of θ2

sl(t) and θ2
d(t)

which are non negative increasing scalar functions. Therefore, if e2ext(T ) = 0, it
follows θ2

sl(t) = 0 ∀t ≤ T and θ2
d(t) = 0 ∀t ≤ T. Finally, due to the definition of

θ2
sl(t) and θ2

d(t), it follows

slη2
x,t = 0, ∀x ∈ Ω, ∀ t ≤ T

dη2
x,t = 0, ∀x ∈ Ω, ∀ t ≤ T.

∗∗From 0 ≤ f(t) ≤ sup
t≤T

f(t) ∀ t ≤ T it follows sup
t≤T

f2(t) ≤ (sup
t≤T

f(t))2 whereas from f2(t) ≤

sup
t≤T

f2(t) ∀ t ≤ T, one easily obtains (sup
t≤T

f(t))2 ≤ sup
t≤T

f2(t). Also, given g(t) ≥ 0 ∀ t ≤ T ,

let g(t) = f2(t), it follows (sup
t≤T

g(t))
1
2 = (sup

t≤T

f2(t))
1
2 = [(sup

t≤T

f(t))2]
1
2 = sup

t≤T

f(t) = sup
t≤T

g
1
2 (t).
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Thus, the given time continuous admissible solution, sad(x, t) satisfies the state laws
and the evolution laws, respectively, that is, it coincides with the exact solution,
sex(x, t).
The viceversa is trivial.

Remark 3.9. The extended dissipation error e2ext(T ) is finite if and only if

(σad, Xad, Rad) ∈ domϕ?

(ε̇p
ad, α̇ad, ṗad) ∈ domϕ.

Unlike the dissipation error, where the constraint of the state laws was imposed
between kinematic and the conjugate static admissible variables, in this case the
model is not required to be a priori transformed into normal form in order to compute
the error, for the meeting of the above conditions is quite easy to realize due to the
convexity of domϕ? and domϕ.

Likewise equation (3.45), for any tn ∈]0, T [, the extended dissipation error
(3.46) can also be expressed as follows

e2ext(T ) = Max

{

e2ext(tn),

sup
tn≤t≤T

{

2

∫

Ω

slη2
x,t(σad, Xad, Rad; εe

ad, αad, pad)dΩ + θ2
d(tn) +

(3.47)

+2

∫

Ω

∫ t

tn

dη2
x,τ (σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) dτ dΩ

}
}

.

This presents the global error at the time T in terms of the error at the time tn < T

and the admissible solution over [tn, T ].

3.5.2 Error in the constitutive equations for admissible so-
lution with jump across time instant tn

In the admissible conditions listed in the preceding section, time continuity had
been always assumed. Object of this section is to show how the previous definitions
of error in the constitutive equations can be extended to the case in which the
hypothesis of time continuity is removed so that admissible solutions may include a
discontinuity jump at a given time instant tn, i.e., sad(x, t

−
n ) 6= sad(x, t

+
n ).

The need for relaxing continuity may arise, for example, in presence of a finite
element solution having discontinuity jump at the time instant tn because of change
of mesh, as will be seen in the following chapters.

In rate independent plasticity, the solution of the initial boundary value prob-
lem which governs the evolution of the continuum depends only on the sequence of
load levels whereas time has just the function of ordering this sequence. This means
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that the response of the system under the loading paths depicted in Figure 3.7, for
instance, is the same with respect to any value of the fictitious time step ∆t during
which the load level is kept constant. In agreement with this behaviour, it can be
assumed that the value of the admissible solution at t+n is also the value at tn + ∆t
and is independent on ∆t. In this way, a fictitious time continuous process over
the time interval [tn, tn +∆t] along which the discontinuity is assumed to be taking
place can be defined, and one can analyse the error in the evolution law as the time
step ∆t shrinks to zero.

An example of this process is illustrated in Figure 3.8 which refers to the time
variation of an admissible plastic strain with discontinuity jump across the time
instant tn. Figure 3.8 also hints to the procedure used for the above extension
which shows the formation of the δ-Dirac at tn for the plastic strain rate because of
the discontinuity jump in ε

p
ad(t) at tn.

Under constant load level equal to b(x, tn), we consider a family of fictitious
time continuous admissible solutions over [tn, tn + ∆t] and parameterized by ∆t
having as limit the given admissible solution, that is, we consider

σad,∆t(x, τ), Xad,∆t(x, τ), Rad,∆t(x, τ);

εad,∆t(x, τ), ε
p
ad,∆t(x, τ), αad,∆t(x, τ), pad,∆t(x, τ),

such that, ∀x ∈ Ω,

lim
∆t→0+

σad,∆t(x, τ) = σad(x, τ); lim
∆t→0+

Xad,∆t(x, τ) = Xad(x, τ);

lim
∆t→0+

Rad,∆t(x, τ) = Rad(x, τ);

lim
∆t→0+

εad,∆t(x, τ) = εad(x, τ); lim
∆t→0+

ε
p
ad,∆t(x, τ) = ε

p
ad(x, τ);

lim
∆t→0+

αad,∆t(x, τ) = αad(x, τ); lim
∆t→0+

pad,∆t(x, τ) = pad(x, τ).

Load Time Variation

Figure 3.7: Fictitious Load Time Variations
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Discontinuous ε
p
ad(τ) Variation

Fictitious Continuous ε
p
ad,∆t(τ) Variation

Plastic Strain Rate ε̇
p
ad,∆t(τ)Variation

Figure 3.8: Definition of Fictitious State Variables Variation

where (•)ad(x, τ) denote the functions with the time discontinuity jump.
With regard to each member of this family, the error in the evolution law can

now be computed. Thus, if ∀x ∈ Ω the following limit exists and is finite,

∆ζ2
d(x, tn) ≡ lim

∆t→0+

∫ tn+∆t

tn

{

ϕ?(σad,∆t(x, τ),Xad,∆t(x, τ), Rad,∆t(x, τ)) +

+ϕ(ε̇p
ad,∆t(x, τ),−α̇ad,∆t(x, τ),−ṗad,∆t(x, τ)) +

−σad,∆t(x, τ) : ε̇
p
ad,∆t(x, τ) +

+Xad,∆t(x, τ) : α̇ad,∆t(x, τ) +Rad,∆t(x, τ)ṗad,∆t(x, τ)
}

dτ (3.48)

it seems natural to assume the limit to be an error in the constitutive equations at
the point x in presence of discontinuity.
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Remark 3.10. The jump in the state variables modifies only the error component
that is associated with the evolution law, since these are the equations that involve
the rate of the internal variables.

Furthermore, the additional term, ∆ζ2
d(x, tn), is always non negative as a result

of limit of non negative functions due to the Legendre-Fenchel inequality. However,
for the material models taken into account, the non negativity of the term ∆ζ2

d(x, tn)
will be checked directly. Since ∆ζ2

d(x, tn) ≥ 0, the jump in the admissible solution
will always produce an increase of the error component associated with the dissipa-
tion.

3.5.2.1 Augmented Dissipation Error

The dissipation error at the time T of the admissible solution with jump across the
time tn ∈ ]0, T [ is given by

∆e2dis(T ) = 2

∫

Ω

∫ T

0

dη2
x,t(σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) dt dΩ + 2

∫

Ω

∆ζ2
d(x, tn)dΩ.

In order to compute ∆ζ2
d(x, tn), the admissible solution is required to satisfy the

state equations, which here we present in the following form

σad,∆t(x, τ) = C[εad,∆t(x, τ) − ε
p
ad,∆t(x, τ)];

(3.49)

Xad,∆t(x, τ) = Λαad,∆t(x, τ); Rad,∆t(x, τ) = g(pad,∆t(x, τ))

where Λ and g(p) are the same as for the Marquis–Chaboche plasticity model.
In the following, we provide the expression for ∆ζ2

d(x, tn) for the rate indepen-
dent plasticity models introduced in section 3.2.4.5 by assuming linear hardening.
This condition is here invoked in order to guarantee that by assuming a time lin-
ear interpolation of the kinematic admissible variables, the corresponding conjugate
forces, given by (3.49), will also appear as time linear interpolation of the values at
the ends of the time step. This results in the static admissibility of the conjugate
forces because of the admissibility of the interpolant values and the convexity of the
elastic domain.

Also, for each model, it will be shown that ∆ζ2
d(x, tn) is non negative and

that by setting ∆ζ2
d(x, tn) equal to zero, we infer the time continuity at tn of the

admissible solution. This, finally, means that ∆ζ2
d(x, tn) characterizes effectively the

discontinuity jump across tn.

The Prandtl–Reuss plasticity model

Continuous Admissible Fictitious Solutions.

We assume, ∀x ∈ Ω, continuous admissible fictitious solutions defined as follows

❏ Kinematic Admissible Solution:
εad,∆t(x, τ), ε

p
ad,∆t(x, τ), pad,∆t(x, τ) are obtained as linear interpolation over

[tn, tn + ∆t] of the values at tn and tn + ∆t.
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❏ Static Admissible Solution:
σad,∆t(x, τ) = C[εad,∆t(x, τ)−ε

p
ad,∆t(x, τ)] and Rad,∆t(x, τ) = Hpad,∆t(x, τ) are

obtained by imposing the state laws. Because of the linearity of these laws,
σad,∆t(x, τ) and Rad,∆t(x, τ) are given by linear interpolation over [tn, tn +∆t]
of the values at tn and tn + ∆t.

❏ σad,∆t(x, τ) is in equilibrium with b(x, tn) because of the convexity of the
equilibrium condition.

❏ (σad,∆t(x, τ), Rad,∆t(x, τ)) ∈ E ∀τ ∈ [tn, tn +∆t] because of the convexity of
the elastic domain.

❏ εad,∆t(x, τ) is kinematically admissible because of the convexity of the com-
patibility conditions.

Finite Value Error Requirements

We also impose that ∀x ∈ Ω the admissible solutions satisfy the following conditions
∣
∣
∣
∣
∣

(σad(x, t
−
n ), Rad(x, t

−
n )) ∈ E

(σad(x, t
+
n ), Rad(x, t

+
n )) ∈ E

}

⇒

⇒ (σad(x, τ), Rad(x, τ)) ∈ E, ∀τ ∈ [tn, tn + ∆t], (3.50)

pad(x, t
+
n ) − pad(x, t

−
n ) ≥ ‖εp

ad(x, t
+
n ) − ε

p
ad(x, t

−
n )‖,

Tr(εp
ad(x, t

+
n ) − ε

p
ad(x, t

−
n )) = 0.

Condition (3.50) occurs because of the linearity of the state laws and convexity of
the elastic domain.

Dissipation Error across the time discontinuity

Consider the expression for the dissipation error for this model given by equation
(3.44), we have,

∀x ∈ Ω

∆ζ2
d(x, tn) = lim

∆t→0+

∫ tn+∆t

tn

{

R0‖ε̇p
ad,∆t(x, τ)‖ +

−σad,∆t(x, τ) : ε̇
p
ad,∆t(x, τ) +Rad,∆t(x, τ)ṗad,∆t(x, τ)

}

dτ =

= R0‖εp
ad(x, t

+
n ) − ε

p
ad(x, t

−
n )‖ + (3.51)

−σad(x, t
+
n ) + σad(x, t

−
n )

2
: (εp

ad(x, t
+
n ) − ε

p
ad(x, t

−
n )) +

+
Rad(x, t

+
n ) +Rad(x, t

−
n )

2
(pad(x, t

+
n ) − pad(x, t

−
n ))
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with the State Equations being satisfied at t−n and t+n .

Theorem 3.3.
Given the admissible solutions sad(t

−
n ) and sad(t

+
n ), which satisfy the state

equations at t−n and t+n respectively, and the finite value error requirements, it follows
that

∆ζ2
d(x, tn) ≥ 0

Proof. To keep the notation simple, let

σ+ = σad(x, t
+
n ), σ− = σad(x, t

−
n );

∆σ = σ+ − σ−;

R+ = Rad(x, t
+
n ), R− = Rad(x, t

−
n );

∆R = R+ −R−;

∆ε = εad(x, t
+
n ) − εad(x, t

−
n );

∆εp = ε
p
ad(x, t

+
n ) − ε

p
ad(x, t

−
n );

∆p = pad(x, t
+
n ) − pad(x, t

−
n ).

From the conditions giving a finite value to the error, it follows

∆p ≥ ‖∆εp‖ and R ≥ 0.

Thus we get

R0‖∆εp‖ − σ+ : ∆εp +R+∆p ≥ R0‖∆εp‖ − σ+ : ∆εp +R+∆εp.

Since Tr
[
∆εp

]
= 0, we can also write,

σ+ : ∆εp = σ+
D : ∆εp ≤ ‖σ+

D‖ ‖∆εp‖.

Hence,

R0‖∆εp‖ − σ+ : ∆εp +R+∆εp ≥

≥ R0‖∆εp‖ − ‖σ+
D‖‖∆εp‖ +R+∆εp =

= (R0 +R+ − ‖σ+
D‖)‖∆εp‖ ≥ 0,

that is,
R0‖∆εp‖ − σ+ : ∆εp +R+∆p ≥ 0. (3.52)

Likewise, it can be proven that

R0‖∆εp‖ − σ− : ∆εp +R−∆p ≥ 0. (3.53)
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Thus, summing up term by term and for the linearity of the double contraction
operator, it follows

∆ζ2
d(x, tn) = R0‖∆εp‖ − σ+ + σ−

2
: ∆εp +

R+ +R−

2
∆p ≥ 0 (3.54)

Theorem 3.4.
Given the admissible solutions sad(t

−
n ) and sad(t

+
n ), satisfying the state equa-

tions at t−n and t+n respectively, and the finite value error requirements, the following
expressions are valid

∆ζ2
d(x, tn) = 0 ⇒







σad(x, t
+
n ) = σad(x, t

−
n )

Rad(x, t
+
n ) = Rad(x, t

−
n )

εad(x, t
+
n ) = εad(x, t

−
n )

ε
p
ad(x, t

+
n ) = ε

p
ad(x, t

−
n )

pad(x, t
+
n ) = pad(x, t

−
n )

Proof. Because of (3.54), by accounting for (3.52) and (3.53), it follows

If ∆ζ2
d(x, tn) = 0 ⇒

{
R0‖∆εp‖ − σ+ : ∆εp +R+∆p = 0

R0‖∆εp‖ − σ− : ∆εp +R−∆p = 0

Thus,
∆σ : ∆εp = ∆R∆p (3.55)

From equilibrium at t−n and t+n it follows
∫

Ω

σ− : ∇ηdΩ =

∫

Ω

b(x, tn)ηdΩ +

∫

∂Ωt

t(x, tn)ηdΩ ∀η ∈ V0

∫

Ω

σ+ : ∇ηdΩ =

∫

Ω

b(x, tn)ηdΩ +

∫

∂Ωt

t(x, tn)ηdΩ ∀η ∈ V0.

Hence, since ∆ε ∈ V0, subtracting term by term, we get
∫

Ω

∆σ : ∆εdΩ = 0 ⇔
∫

Ω

∆σ : (∆εe + ∆εp)dΩ = 0

⇔
∫

Ω

∆σ : ∆εedΩ +

∫

Ω

∆σ : ∆εpdΩ = 0 (3.56)

In the dissipation error the state laws are satisfied, i.e.

∆σ = C∆εe

∆R = H∆p.
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Hence, it follows

∆σ : ∆εe = C∆εe : ∆εe ≥ 0 (3.57)

∆σ : ∆εp = ∆R∆p = H∆p2 ≥ 0.

By accounting for (3.55), from (3.56) the following results are obtained

∆σ : ∆εe = 0 ⇒ ∆σ = 0 ⇒ ∆εe = 0

∆σ : ∆εp = ∆R∆p = 0 ⇒ H∆p2 = 0 ⇒ ∆p = 0
(a)⇒ ∆εp = 0

where implication (a) follows from the condition imposed on the admissible solution
to deliver a finite error, given by (3.50).

The standard Marquis–Chaboche modified plasticity model

Continuous Admissible Fictitious Solutions.

We assume, ∀x ∈ Ω, continuous admissible fictitious solutions defined as follows

❏ Kinematic Admissible Solution:
εad,∆t(x, τ), ε

p
ad,∆t(x, τ), αad,∆t(x, τ), pad,∆t(x, τ) are obtained as linear inter-

polation over [tn, tn + ∆t] of the values at tn and tn + ∆t.

❏ Static Admissible Solution:
σad,∆t(x, τ) = C[εad,∆t(x, τ) − ε

p
ad,∆t(x, τ)], Xad,∆t(x, τ) = Λαad,∆t(x, τ) and

Rad,∆t(x, τ) = Hpad,∆t(x, τ).

❏ σad,∆t(x, τ) is in equilibrium with b(x, tn) because of the convexity of the
equilibrium condition.

❏ (σad,∆t(x, τ),Xad,∆t(x, τ), Rad,∆t(x, τ)) ∈ E ∀τ ∈ [tn, tn + ∆t] because of the
convexity of the elastic domain.

❏ εad,∆t(x, τ) is kinematically admissible because of the convexity of the com-
patibility conditions.

Finite Value Error Requirements

We also impose that ∀x ∈ Ω the admissible solutions satisfy the following conditions

∣
∣
∣
∣
∣

(σad(x, t
−
n ),Xad(x, t

−
n ), Rad(x, t

−
n )) ∈ E

(σad(x, t
+
n ),Xad(x, t

+
n ), Rad(x, t

+
n )) ∈ E

}

⇒

⇒
{

(σad(x, τ),Xad(x, τ), Rad(x, τ)) ∈ E

∀τ ∈ [tn, tn + ∆t].
(3.58)

pad(x, t
+
n ) − pad(x, t

−
n ) ≥ ‖εp

ad(x, t
+
n ) − ε

p
ad(x, t

−
n )‖,
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Tr[εp
ad(x, t

+
n ) − ε

p
ad(x, t

−
n )] = 0,

ε
p
ad(x, t

+
n ) − ε

p
ad(x, t

−
n ) = 0 ⇒ αad(x, t

+
n ) − αad(x, t

−
n ) = 0. (3.59)

Condition (3.58) occurs because of the linearity of the state laws and convexity of
the elastic domain, whereas condition (3.59) derives from the definition (3.27)2 of
ϕ(ε̇p,−α̇,−ṗ).

Dissipation Error across the time discontinuity

For this model we have to distinguish the following two cases in relation to the defi-
nition (3.27)2 of the Fenchel-Legendre conjugate of the dissipation pseudo-potential

∀x ∈ Ω

❏ If ε
p
ad(x, t

+
n )−ε

p
ad(x, t

−
n ) = 0 then it can also be written α

p
ad(x, t

+
n )−α

p
ad(x, t

−
n ) =

0 because of (3.59). By accounting for (3.27), the dissipation error takes the
following expression

∆ζ2
d(x, tn) = lim

∆t→0+

∫ tn+∆t

tn

Rad,∆t(x, τ)ṗad,∆t(x, τ)dτ =

=
Rad(x, t

+
n ) +Rad(x, t

−
n )

2
(pad(x, t

+
n ) − pad(x, t

−
n )), (3.60)

with the State Equations being satisfied at t−n and t+n .

❏ If ε
p
ad(x, t

+
n ) − ε

p
ad(x, t

−
n ) 6= 0, and recalling equation (3.27)1, the dissipation

error takes the following expression

∆ζ2
d(x, tn) = lim

∆t→0+

∫ tn+∆t

tn

{

R0‖ε̇p
ad,∆t(x, τ)‖ +

+
c

2a

‖ε̇p
ad,∆t(x, τ) − α̇ad,∆t(x, τ)‖2

‖ε̇p
ad,∆t(x, τ)‖

− σad,∆t(x, τ) : ε̇
p
ad,∆t(x, τ) +

+Xad,∆t(x, τ) : α̇ad,∆t(x, τ) +Rad,∆t(x, τ)ṗad,∆t(x, τ)
}

dτ =

= R0‖εp
ad(x, t

+
n ) − ε

p
ad(x, t

−
n )‖ + (3.61)

+
c

2a

‖(εp
ad(x, t

+
n ) − ε

p
ad(x, t

−
n )) − (αad(x, t

+
n ) − αad(x, t

−
n ))‖2

‖εp
ad(x, t

+
n ) − ε

p
ad(x, t

−
n )‖ +

−σad(x, t
+
n ) + σad(x, t

−
n )

2
: (εp

ad(x, t
+
n ) − ε

p
ad(x, t

−
n )) +

+
Xad(x, t

+
n ) + Xad(x, t

−
n )

2
: (αad(x, t

+
n ) − αad(x, t

−
n ))+
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+
Rad(x, t

+
n ) +Rad(x, t

−
n )

2
(pad(x, t

+
n ) − pad(x, t

−
n )),

with the State Equations being satisfied at t−n and t+n .

Theorem 3.5.
Given the admissible solutions sad(t

−
n ) and sad(t

+
n ), satisfying the state equa-

tions at t−n and t+n respectively, and the finite value error requirements, it follows
that

∆ζ2
d(x, tn) ≥ 0

Proof. If ∆εp = 0, ∆αp = 0,

∆ζ2
d(x, tn) =

R+ +R−

2
∆p ≥ 0

because of the finite value error requirements.

If ∆εp 6= 0,

∆ζ2
d(x, tn) = R0‖∆εp‖ +

c

2a

‖∆εp − ∆α‖2

‖∆εp‖ − σ+ + σ−

2
: ∆εp +

+
X+ + X−

2
: ∆α +

R+ +R−

2
∆p. (3.62)

Let us consider the term

R0‖∆εp‖ +
c

2a

‖∆εp − ∆α‖2

‖∆εp‖ − σ : ∆εp + X : ∆α +R∆p, (3.63)

where σ, X, R can all refer either to the time instant t+n or t−n . In the following, we
will show that (3.63) is non negative, which then determines the non negativity of
(3.62).
Since,

∆p ≥ ‖∆εp‖,
it follows

R∆p ≥ R‖∆εp‖.
Also,

σ : ∆εp = σD : ∆εp = (σD − X + X) : ∆εp =

= (σD − X) : ∆εp + X : ∆εp ≤ ‖σD − X‖ ‖∆εp‖ + X : ∆εp

Hence,
−σ : ∆εp ≥ −‖σD − X‖ ‖∆εp‖ − X : ∆εp.
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By accounting for the above inequalities, it results

R0‖∆εp‖ +
c

2a

‖∆εp − ∆α‖2

‖∆εp‖ − σ : ∆εp + X : ∆α +R∆p ≥

≥ c

2a

‖∆εp − ∆α‖2

‖∆εp‖ + (R0 +R)‖∆εp‖ − ‖σD − X‖‖∆εp‖ +

−X : (∆εp − ∆α).

From the yield condition, it follows

(R0 +R) − ‖σD − X‖ ≥ a

2c
‖X‖2,

hence,
[
(R0 + R) − ‖σD − X‖

]
‖∆εp‖ ≥ a

2c
‖X‖2‖∆εp‖

Also, it follows
−X : (∆εp − ∆α) ≥ −‖X‖ ‖∆εp − ∆α‖

so that finally, we have

R0‖∆εp‖ +
c

2a

‖∆εp − ∆α‖2

‖∆εp‖ − σ : ∆εp + X : ∆α +R∆p ≥

≥ c

2a

‖∆εp − ∆α‖2

‖∆εp‖ +
a

2c
‖X‖2‖∆εp‖ − ‖X‖‖∆εp − ∆α‖ =

=
(
√

c

2a

‖∆εp − ∆α‖
√

‖∆εp‖
−
√

a

2c

√

‖∆εp‖‖X‖
)2

≥ 0 (3.64)

Theorem 3.6.
Given the admissible solutions sad(t

−
n ) and sad(t

+
n ), satisfying the state equa-

tions at t−n and t+n respectively, and the finite value error requirements, it follows
that

∆ζ2
d(x, tn) = 0 ⇒







σad(x, t
+
n ) = σad(x, t

−
n )

Xad(x, t
+
n ) = Xad(x, t

−
n )

Rad(x, t
+
n ) = Rad(x, t

−
n )

εad(x, t
+
n ) = εad(x, t

−
n )

ε
p
ad(x, t

+
n ) = ε

p
ad(x, t

−
n )

αad(x, t
+
n ) = αad(x, t

−
n )

pad(x, t
+
n ) = pad(x, t

−
n )
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Proof. We again have to distinguish the two cases in relation to the expression of
the dissipation error as given by equation (3.60) and (3.61). We first consider the
case of ∆εp 6= 0 and then ∆εp = 0, ∆α = 0.

If ∆εp 6= 0, given the expression (3.61), and accounting for (3.64), it follows

If ∆ζ2
d(x, tn) = 0 ⇒







σ+ : ∆εp = R0‖∆εp‖ +
c

2a

‖∆εp − ∆α‖
‖∆εp‖ +

+R+∆p+ X+ : ∆α

σ− : ∆εp = R0‖∆εp‖ +
c

2a

‖∆εp − ∆α‖
‖∆εp‖ +

+R−∆p+ X− : ∆α

thus,
∆σ : ∆εp = ∆R∆p + ∆X : ∆α (3.65)

From equilibrium at t−n and t+n it follows (see equation (3.56))
∫

Ω

∆σ : ∆εdΩ = 0 ⇔
∫

Ω

∆σ : ∆εedΩ +

∫

Ω

∆σ : ∆εpdΩ = 0 (3.66)

In the dissipation error the state laws are satisfied, i.e.

∆σ = C∆εe

∆R = H∆p

∆X = Λ∆α

hence, it follows

∆σ : ∆εe = C∆εe : ∆εe ≥ 0 (3.67)

∆σ : ∆εp = ∆R∆p + ∆X : ∆α = H∆p2 + Λ∆α : ∆α ≥ 0

for Λ is a second order positive definite tensor.
By accounting for (3.67), from (3.66) it results

∆σ : ∆εe = 0 ⇒ ∆σ = 0 ⇒ ∆εe = 0

∆σ : ∆εp = ∆R∆p + ∆X : ∆α = 0 ⇒

⇒

∣
∣
∣
∣
∣
∣

H∆p2 = 0 ⇒ ∆p = 0
(a)⇒ ∆εp = 0

Λ∆α : ∆α = 0 ⇒ ∆α = 0

where implication (a) follows from the condition imposed on the admissible solution
to deliver a finite error.
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If ∆εp = 0, ∆α = 0, the dissipation error is given by

∆ζ2
d(x, tn) =

R− +R+

2
∆p =

H

2
(p+2 − p−

2

)

where we have taken into account the meeting of the state equations at t−n and t+n .
Thus, it follows

∆ζ2
d(x, tn) = 0 ⇒ p+2

= p−
2 ⇒ p+ = p−, for p ≥ 0

which delivers
∆p = 0 ⇒ ∆R = 0

From equations (3.66) and (3.67) we derive also

∆εe = 0 ⇒ ∆σ = 0.

3.5.2.2 Augmented Extended Dissipation Error

The extended dissipation error at the time T of the admissible solution with jump
across the time tn ∈ ]0, T [ is given by

∆e2ext(T ) = sup
t≤T

{

2

∫

Ω

slη2
x,t(σad, Xad, Rad; εe

ad, αad, pad)dΩ

︸ ︷︷ ︸

θ2
sl

(t)

+

(3.68)

+ 2

∫

Ω

∫ t

0

dη2
x,τ (σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) dτ dΩ + 2

∫

Ω

∆ζ2
d(x, tn)dΩ,

︸ ︷︷ ︸

θ2
d
(t)

}

where for ∆ζ2
d(x, tn) we consider the same expressions as given in Section 3.5.2.1.

For the applications, it is convenient to rewrite equation (3.68) as follows,

∆e2ext(T ) = MAX

{

e2
ext(t

−

n )
︷ ︸︸ ︷

sup
t≤t−n

[

2

∫

Ω

slη2
x,t dΩ

︸ ︷︷ ︸

θ2
sl(t)

+ 2

∫

Ω

∫ t

0

dη2
x,τ dτ dΩ

︸ ︷︷ ︸

θ2
d(t)

]

,

(3.69)

sup
t+n ≤t≤T

[

2

∫

Ω

slη2
x,t dΩ

︸ ︷︷ ︸

θ2
sl(t)

+θ2
d(t

−
n ) + 2

∫

Ω

∆ζ2
d(x, tn) dΩ

︸ ︷︷ ︸
∆θ2

d(tn)

+ 2

∫

Ω

∫ t

t+n

dη2
x,τ dτ dΩ

︸ ︷︷ ︸

[t+n , t]θ2
d

]}

which highlights the different contributions to the error from the parts of the ad-
missible solution which are continuous in time.
The next result guarantees that definition (3.68) can be assumed as measure of the
error in the following sense
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Theorem 3.7.
Given the admissible solutions sad(t

−
n ) and sad(t

+
n ), meeting the finite value

error requirements and not necessarily the state equations at t−n and t+n , respectively,
it follows that

∆e2ext(T ) ≥ 0

∆e2ext(T ) = 0 ⇐⇒ sad(x, t) = sex(x, t) ∀x ∈ Ω, ∀ t ≤ T.

Proof. The extended dissipation error ∆e2ext(T ) is defined as the supremum of a
function which is sum of non negative terms, thus

∆e2ext(T ) = 0 ⇒







θ2
sl(t) = 0 ∀ t ≤ T ⇔

∣
∣
∣
∣

slη2
x,t = 0

∀x ∈ Ω, ∀ t ≤ T.
(a)

∆θ2
d(T ) = 0 ∀ t ≤ T ⇔

∣
∣
∣
∣

∆ζ2
d(x, tn) = 0

∀x ∈ Ω,
(b)

∣
∣
∣
∣

dη2
x,t = 0

∀x ∈ Ω, ∀ t ≤ T.
(c)

(3.70)
Condition (3.70a) means that the admissible solution sad(x, t) satisfies the state
laws, ∀x ∈ Ω, ∀ t ≤ T . This condition along with (3.70b) allows one to conclude
also that the jump in all the variables is zero as a result of the argument given in
Section 3.5.2.1 for the rate independent plasticity models taken into account. Finally,
condition (3.70c) allows to conclude that the time continuous admissible solution
satisfies also the evolution law.

Even for the extended dissipation error a characterization of only the discontinu-
ity can be given. Hereafter, the condition is proved only for the Prandtl–Reuss
model with linear hardening. The argument applies likewise to the standard vari-
ant Marquis–Chaboche model with linear hardening. For both the models with
more general hardening laws, we believe, however, that similar conclusions can be
obtained.

The condition characterizing the discontinuity is next given in a more general
format which applies to admissible solutions with jump across time instant tn in the
case of rate-independent plasticity.

Denote by

sad(x, tn) = (σad(x, tn), Rad(x, tn); εad(x, tn), ε
p
ad(x, tn), pad(x, tn))

and

sad(x, tn + ∆t) = (σad(x, tn + ∆t), Rad(x, tn + ∆t);

εad(x, tn + ∆t), ε
p
ad(x, tn + ∆t), pad(x, tn + ∆t))

92



any admissible solution at tn and tn + ∆t, respectively, corresponding to the same
load level and with sad(t) the admissible solution obtained as time linear interpola-
tion over [tn, tn + ∆t] of sad(tn) and sad(tn + ∆t). The following theorem, then, can
be stated

Theorem 3.8.
Given the admissible solutions sad(tn) and sad(tn + ∆t), corresponding to the

same load level, meeting the finite value error requirements and not necessarily the
state equations at tn and tn + ∆t, respectively, it follows ∀x ∈ Ω,

IF







slη2
x,tn

= slη2
x,tn+∆t = slη2

x,t

∀t ∈ [tn, tn + ∆t].

∆ζ2
x,d(x, tn) = 0

⇒







σad(x, tn) = σad(x, tn + ∆t)

Rad(x, tn) = Rad(x, tn + ∆t)

εad(x, tn) = εad(x, tn + ∆t)

ε
p
ad(x, tn) = ε

p
ad(x, tn + ∆t)

pad(x, tn) = pad(x, tn + ∆t)

Proof. For the Prandtl–Reuss model with linear hardening, the hypothesis of the
theorem concerning the error in the state law writes as

∫

Ω

(σad(t) − Cεe
ad(t)) : C

−1(σad(t) − Cεe
ad(t))dx +

+
1

H

∫

Ω

(Rad(t) − Hpad(t))
2dx = const ∀ t ∈ [tn, tn + ∆t].

Thus, differentiation with respect to time delivers

∫

Ω

(σad(t) − Cεe
ad(t)) : C

−1(σ̇ad(t) − Cε̇e
ad(t))dx +

+
1

H

∫

Ω

(Rad(t) − Hpad(t))(Ṙad(t) − Hṗad(t))dx = 0 ∀ t ∈ [tn, tn + ∆t]

which , because of the definition of sad(t), can be written as

∫

Ω

(σad(t) − Cεe
ad(t)) : C

−1(∆σad − C∆εe
ad)dx +

(3.71)

+
1

H

∫

Ω

(Rad(t) − Hpad(t))(∆Rad − H∆pad)dx = 0 ∀ t ∈ [tn, tn + ∆t]

where the same notation as in the proof of Theorem 3.3 has been employed provided
that t−n is meant as tn and t+n as tn + ∆t.
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After computing equation (3.71) for t = tn and t = tn + ∆t and subtracting side to
side one obtains

∫

Ω

(∆σad − C∆εe
ad) : C

−1(∆σad − C∆εe
ad)dx +

+
1

H

∫

Ω

(∆Rad − H∆pad)(∆Rad − H∆pad)dx = 0,

that is,
∫

Ω

(∆σad − C∆εe
ad) : C

−1(∆σad − C∆εe
ad)dx = 0

1

H

∫

Ω

(∆Rad − H∆pad)
2dx = 0,

so that the following relations hold

∆σad − C∆εe
ad = 0

∆Rad − H∆pad = 0,

and the same arguments as in the proof of Theorem 3.3 can now be adopted.

3.5.3 Definition of error in solution

Let

sex(x, t) =
(

σex(x, t),Xex(x, t), Rex(x, t); εex(x, t), ε
p
ex(x, t),αex(x, t), pex(x, t)

)

denote the exact solution of the initial boundary value problem defined in section
3.2, that is, sex(x, t) is the time continuos function that meets all the equations
given in Box 3.1.
Let

skin
ad (x, t) =

(

uad(x, t), ε
p
ad(x, t),αad(x, t), pad(x, t)

)

, (3.72)

be a kinematically admissible solution with u meeting the compatibility conditions,
and ε

p
ad(x, t),αad(x, t), pad(x, t) meeting the initial conditions. The kinematically

admissible solution may also present discontinuity jump across time instants tn. We
assume the error in the constitutive equations produced by

sex,ad =
(

σex,Xex, Rex; uad, ε
p
ad,αad, pad

)

,

as global measure of the exact error in solution associated with skin
ad .

This is defined as
e2ex(T ) = sup

t≤T

θ2
ex(t), (3.73)
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where

θ2
ex(t) = 2

∫

Ω

slη2
x,t(σex, Xex, Rex; εe

ad, αad, pad)dΩ

∣
∣
∣
∣
t

+

+2

∫

Ω

∫ t

0

dη2
x,τ (σex, Xex, Rex; ε̇

p
ad, α̇ad, ṗad) dτ dΩ.

The following heuristic argument show that this definition of error is meaningful.
First, note that

e2ex(T ) FINITE ⇒
{ (

σex, Xex, Rex

)
∈E ∀x ∈ Ω, ∀ t ≤ T (a)

(
ε̇

p
ad, α̇ad, ṗad

)
∈C ∀x ∈ Ω, ∀ t ≤ T (b)

(3.74)

where E × C is the effective domain of the function dη2
x,t(σ, X, R; ε̇p, α̇, ṗ). For

the plasticity models under consideration, if the admissible solution is discontinuous
across the time instant tn, conditions (3.74b) imply that

∆pad ≥ ‖∆ε
p
ad‖. (3.75)

Now, we can give the following result:

Theorem 3.9.
Given a kinematic admissible solution skin

ad =
(

uad, ε
p
ad,αad, pad

)

, it follows

that

e2ex(T ) = 0 IF and ONLY IF

{
sex,ad is time continuous

sex,ad(x, t) = sex(x, t) ∀x ∈ Ω, ∀ t ≤ T

Proof. Denote with

σ̃ = C[εad − ε
p
ad],

X̃ = Λαad,

R̃ = g(pad)

the forces conjugate to the admissible kinematic variables
(
εad, ε

p
ad, pad,αad

)
.

Since e2ex(T ) is defined as the supremum of a function which is sum of non negative
terms, it follows

e2ex(T ) = 0 ⇒
{ slη2

x,t = 0 ∀x ∈ Ω, ∀ t ≤ T, (a)

dη2
x,t = 0 ∀x ∈ Ω, ∀ t ≤ T. (b)

Condition (a) means that

σ̃(x, t) = σex(x, t) ∀x ∈ Ω, ∀ t ≤ T,

X̃(x, t) = Xex(x, t) ∀x ∈ Ω, ∀ t ≤ T,

R̃(x, t) = Rex(x, t) ∀x ∈ Ω, ∀ t ≤ T.
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Because of the time continuity of (σex(x, t),Xex(x, t), Rex(x, t)) and of the continu-
ity of the functional relations that define the state equations, the time continuity of
(εe

ad, pad, αad) also follows. In turn, the time continuity of pad, along with the condi-
tion (3.75) implies also the continuity of ε

p
ad, hence the continuity of εad = εe

ad + ε
p
ad,

as well. Then, it follows that
(

σ̃, X̃, R̃; uad, ε
p
ad,αad, pad

)

= sex,ad

is time continuous, statically admissible, meets the state laws and the evolution
laws. Thus it coincides with the exact solution, sex.

3.5.3.1 Extension of the Prager-Synge theorem to the Dissipation Error

In the case of the dissipation error, for a time continuous admissible solution sad,
Ladevèze (1999) shows that the following equation holds for a normal formulation
of the model

∫

Ω

∫ t

0

dη2
x,τ (σad, Xad, Rad; ε̇

p
ad, α̇ad, ṗad) dτ dΩ =

=
1

2

∫

Ω

(
σex − σad

)
: C

−1
(
σex − σad

)
dΩ

∣
∣
∣
∣
t

+

+
1

2

∫

Ω

(
Xex − Xad

)
: Λ−1

(
Xex − Xad

)]

dΩ

∣
∣
∣
∣
t

+

+
1

2

∫

Ω

[(
Rex −Rad

)
H

−1
(
Rex −Rad

)]

dΩ

∣
∣
∣
∣
t

+ (3.76)

+

∫

Ω

∫ t

0

dη2
x,τ (sad, sex) dτ dΩ

where
dη2

x,t(sad, sex) = dη2
x,t(sex,ad) + dη2

x,t(sad,ex)

with

sex,ad =
(

σex,Xex, Rex; uad, ε
p
ad,αad, pad

)

,

sad,ex =
(

σad,Xad, Rad; uex, ε
p
ex,αex, pex

)

,

which can be easily obtained by elaborating on the expression of dη2
x,t(sad) and

accounting of the properties of the exact solution sex.
Equation (3.76) can be considered as an extension of the Prager-Synge theorem

to the Dissipation Error and, likewise for the linear elasticity, allows one to show
easily that the dissipation error is an upper bound for the error in the solution as
defined by equation (3.73). Indeed, we have the following result:

Theorem 3.10.
Given an admissible solution, sad, with respect to the computation of the

dissipation error, it follows
e2dis(T ) ≥ e2ex(T ) (3.77)
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Proof. Let

θ2
ex(t) =

∫

Ω

(
σex − σad

)
: C

−1
(
σex − σad

)
dΩ

∣
∣
∣
∣
t

+

+

∫

Ω

(
Xex − Xad

)
: Λ−1

(
Xex − Xad

)
dΩ

∣
∣
∣
∣
t

+

+

∫

Ω

[(
Rex − Rad

)
H

−1
(
Rex − Rad

)]

dΩ

∣
∣
∣
∣
t

+

+2

∫

Ω

∫ t

0

dη2
x,τ (sex,ad) dτ dΩ

and

θ2
d(t) = 2

∫

Ω

∫ t

0

dη2
x,τ (sad) dτ dΩ.

Since dη2
x,τ (sex,ad) ≥ 0 and dη2

x,τ (sad,ex) ≥ 0, it follows from equation (3.76),

θ2
d(t) ≥ θ2

ex(t) ∀ t ≤ T.

Thus, it is
sup
t≤T

θ2
d(t) ≥ sup

t≤T

θ2
ex(t) = e2ex(T )

where
sup
t≤T

θ2
d(t) = θ2

d(T ) ≡ e2dis(T ),

since θ2
d(t) is an increasing function of time.

3.6 Concluding Remarks

This Chapter represents the theoretical core of the thesis. Here, the theory of the
error in the constitutive equations for material models with internal variables and
associative flow rule has been presented following the works of Ladevèze (1989) and
Ladevèze et al. (1999).

The fundamental notion of admissible solution has been given. The error in
the constitutive equations developed by Ladevèze et al. (1999) has been extended
to admissible solutions with discontinuity jump at the time instant tn in the case of
rate–independent plasticity models. Theorem 3.8 represents the main proposition
of the Chapter. The theorem provides a characterization of the discontinuity jump
in the admissible solution as a function of the augmented term ∆ζ2

x,d(x, tn) and of
the behaviour of the error component associated with the residual in the state law.

As a result, the augmented extended dissipation error can be employed as a
basis of methodology for the assessment of the global accuracy in time of finite
element solutions on evolving meshes.
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With this regard, in the next Chapter we first recall the governing finite element
equations and subsequently, we continue discussing the several sources of discretiza-
tion errors which are introduced, in particular those arising from the change of finite
element mesh from one time increment to the other.
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Part II

Application to the Finite Element
Solution of the IBVP in

Elasto-Plasticity
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Chapter 4

The Finite Element Solution of
the IBVP in Elasto-Plasticity

4.1 Introduction

In this chapter we report on the displacement finite element method for the solu-
tion of the initial boundary value problem of an elastoplastic model with internal
variables. After reformulating the general problem in a way which presents the
displacement field u = u(x, t) ∈ V as the sole principal unknown, we continue
by discussing the corresponding discrete schemes so that the nature of the ensuing
discretization errors can be understood.

With this regard and the aim to set a general framework for handling evolving
finite element meshes, we need to invert the usual sequence of first spatial and then
temporal discretization by considering first the semidiscrete scheme in time, which is
here obtained by a backward Euler integration in time. The initial boundary value
problem, continuous in time and space, is transformed into the recursive solution of
nonlinear problems, continuous with respect to the space, which are referred to as
incremental boundary value problems, henceforth abbreviated as InBVP. In these
problems, the state of the system at the time instant tn is a data of the problem,
whereas the principal unknown is the displacement field at the time instant tn+1.

The fully discrete scheme of the initial boundary value problem is therefore ob-
tained by a finite element discretization of these incremental boundary value prob-
lems. This is obtained by replacing the general infinite dimensional affine spaces
where the principal unknown and test functions belong to, with finite dimensional
affine spaces. Here, we observe that change of data and/or of finite element mesh
from one time interval to the other can be both related to a discontinuity jump of
the approximate solution across the time instant tn. As a result of the observations
expressed in Section 3.4, in the developments of reliable a posteriori error estima-
tors, one needs, therefore, to account also for the jump. With such a posteriori
error estimator at hand, indication on how to change the finite element space and
define the corresponding data can be given and the assessment of the several transfer
operations proposed in literature can be framed in the context of the ensuing error.
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We, therefore, will give a brief review of some of the current techniques to trans-
fer data from one mesh to the other, and recall the numerical techniques adopted
for the solution of the nonlinear algebraic system of equations before concluding the
chapter.

4.2 The displacement formulation of the IBVP

In section 3.2 the properties and equations that define the behaviour of a standard
generalised material model have been given, which for the reader’s convenience have
been summarized in Box 3.1. There, the constitutive equations were presented in the
alternative scalar equivalent formulations for the purpose of the theory of the error
in the constitutive equations. The latter are now given in a more general format, not
necessarily restricted to the class of standard models, which is used as basis of the
numerical discretization. The general formulation of the problem, therefore, reads
as in Box 4.1 where F and G denote two multivalued tensorial functions which assure
the thermodynamic admissibility of the model and enjoy the necessary regularity
properties to guarantee a solution of the constitutive initial value problem for given
total strain. Furthermore, as for the specific choice of the functional spaces, that
is, of the functional setting in which the initial boundary value problem is posed, in
the following we assume, if not stated otherwise, that the spaces are endowed with
those minimum regularity properties that make the operations involved meaningful
and guarantee at least the existence of a solution (Brezis, 1986). However, given
the generality of the formulation in Box 4.1, in the current literature, there are no
results on its well–posedness. These are available only for some special classes of
material models and for some formulations of the initial boundary value problem,
as it can be found, among others, in the works of Moreau (1974); Duvaut & Lions
(1976); Johnson (1976a, 1978); Suquet (1981); Temam (1985, 1986); Han & Reddy
(1999); Alberty & Carstensen (2000) and Fuchs & Seregin (2000).

Remark 4.1. We would like to point out the two main techniques which have been
adopted for the proof of existence of solutions and which differentiate mainly in
the first part of the proof. One makes a systematic use of Rothe’s method (Kacur,
1985) in which first approximate solutions are constructed by semidiscretization in
time, and then one passes to the limit using compactness arguments. The other
technique applies the methods of the constructive theory of partial differential equa-
tions in which a family of regularized problems is examined before passing to the
limit using likewise compactness arguments (Evans, 1999). For both the techniques
it is fundamental that uniform a priori estimates of the approximate solutions are
available.
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Box 4.1. General formulation of the Initial Boundary Value Problem for a

model with internal variables

Given b(x, t) on Ω, t(x, t) on ∂Ωt and the initial state
(here assumed as free)

Find ∀ t ∈ [0, T ]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u = u(•, t) ∈ V
εp = εp(•, t) ∈ E
α = α(•, t) ∈ Λ

σ = σ(•, t) ∈ S
A = A(•, t) ∈ A

such that the following equations are satisfied:

〈σ(x, t),∇η(x)〉 = 〈b(x, t),η(x)〉+ 〈t(x, t),η(x)〉∂Ωt

∀η ∈ V0, ∀ t ∈ [0, T ],

and, ∀x ∈ Ω, ∀ t ∈ [0, T ],

ε(x, t) = ∇su(x, t)

Constitutive Initial Value Problem (CIVP)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ε(x, t) = εe(x, t) + εp(x, t)

σ(x, t) =
∂ψe

∂εe
(εe(x, t))

A(x, t) =
∂ψp

∂α
(α(x, t))

∂tε
p(x, t) ∈ F(σ(x, t),A(x, t))

∂tα(x, t) ∈ G(σ(x, t),A(x, t))

εp(x, t = 0) = 0

α(x, t = 0) = 0
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4.2.1 Statement of the problem

The displacement formulation of the initial boundary value problem defined in Box
4.1 is obtained further the observation that the constitutive initial value problem can
be solved at any point x ∈ Ω with respect to the stress tensor once the displacement
field is given.

Box 4.2. Displacement formulation of the initial boundary value problem for

a model with internal variables

Given b(x, t) on Ω, t(x, t) on ∂Ωt and the initial state
(here assumed as free)

Find ∀ t ∈ [0, T ]

u = u(•, t) ∈ V

such that the following equation is satisfied:

〈σ(x, t),∇η(x)〉 = 〈b(x, t),η(x)〉+ 〈t(x, t),η(x)〉∂Ωt

∀η ∈ V0, ∀ t ∈ [0, T ],

where σ = σ(x, t) is the stress tensor field obtained by
solving at any point x ∈ Ω the following constitutive
initial value problem with prescribed strain ε(x, t) =
∇su(x, t), ∀ t ∈ [0, T ]

Constitutive Initial Value Problem (CIVP)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ε(x, t) = εe(x, t) + εp(x, t)

σ(x, t) =
∂ψe

∂εe
(εe(x, t))

A(x, t) =
∂ψp

∂α
(α(x, t))

∂tε
p(x, t) ∈ F(σ(x, t),A(x, t))

∂tα(x, t) ∈ G(σ(x, t),A(x, t))

εp(x, t = 0) = 0

α(x, t = 0) = 0

We assume that given the displacement field, u = u(x, t), the constitutive
initial value problem given in Box 4.1 has solution.

By replacing then the stress tensor into the equilibrium equation, we obtain an
equation with respect to only the displacement field. The displacement formulation
of the initial boundary value problem reads, therefore, as in Box 4.2 (de Souza Neto
et al., 2002).
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Remark 4.2. The solution of the constitutive model with respect to the stress tensor
in terms of the displacement field is implied, on a conceptual level and under general
smoothness assumptions, by the equivalence of the two type of formulations of a
constitutive model, the one in terms of the history of the mechanical variables and
the other in terms of the internal variables (Bataille & Kestin, 1979; Ladevèze, 1999).
Also, it is worth mentioning that the solution of the constitutive initial value problem
(henceforth abbreviated as CIVP) with prescribed strain field ε(x, t) = ∇su(x, t)
delivers the field of all the variables which describe the state of the system (Laborde
& Nguyen, 1990).

Remark 4.3. A formal expression of the problem given in Box 4.2 in the case of
perfect plasticity with the equation expressed only in terms of the displacement field
can be found, for instance, in Rannacher & Suttmeier (1998). This formulation is,
in fact, not different from the one given in Box 4.2 since the authors let σ = Π(∇u)
where Π denotes a very general operator obtained by solving the CIVP with respect
to u.

4.3 The time discrete problem

The displacement formulation of the initial boundary value problem given in Box
4.2 is discretized in time by the backward Euler method. This is the time discrete
scheme which will be the focus of our considerations in the following because of its
stability and accuracy properties for finite time step (Ortiz & Popov, 1985).

Let 0 = t1 < . . . < tn < . . . < tN+1 = T be a partition of the time interval
of interest [0, T ] and set k = max

1≤n≤N
{kn = tn+1 − tn}. A family of fully implicit

approximations of the problem in Box 4.2 is obtained as recursive solution of the
non linear spatially continuous variational problems defined in Box 4.4. These are
obtained by replacing the rate quantities with backward difference quotients and
by sampling all the other functions at tn+1. Thus, the constitutive initial value
problem is transformed into the constitutive incremental nonlinear problem (hence-
forth, abbreviated as CInNP), and the resulting global problem appears, therefore,
in the form of a system of variational equations, which expresses the equilibrium,
and unilateral constraints in the presence of the inclusions which define the stress
tensor field. This format is much clearer if, for instance, we refer to the model of
linear elasticity and associative plasticity with linear hardening (Simo & Hughes,
1998; Rannacher & Suttmeier, 1998; Han & Reddy, 1999), which is given in Box
4.3. Here, the CInNP is obtained by backward Euler discretization of the principle
of maximum plastic dissipation (3.17).

The effect of replacing the time derivative with backward difference quotients
produces an error which is referred to as the time discretization error. The main
effect of this error is visualized in Figure 4.1 for a model of perfect plasticity with
regard to the error on the direction of the plastic flow under the assumption that
the point x experiences plastic loading passing from tn to tn+1. However, also an
error in the intensity of the plastic flow must be noted, in general. The magnitude
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Box 4.3. Fully implicit scheme of the IBVP for the model of linear elasticity and

associative plasticity with linear hardening

For: n = 1, 2, . . . , N

Given: External Loading bn+1(x) = b(•, tn+1), on Ω
tn+1(x) = t(•, tn+1), on ∂Ωt

State of the system at tn

∣
∣
∣
∣

εp
n(x) = εp(•, tn) ∈ E

αn(x) = α(•, tn) ∈ Λ

Find: un+1(x) = u(•, tn+1) ∈ V

Such That the following equation is satisfied:

〈σn+1(x),∇η(x)〉 = 〈bn+1(x),η(x)〉+ 〈tn+1(x),η(x)〉∂Ωt

∀η ∈ V0,

with σn+1(x) = σ(x, tn+1) ∈ Σn+1(x), where Σn+1(x) is obtained by
solving at any point x ∈ Ω the following variational inequality defined
by the prescribed strain ε(x, tn+1) = ∇sun+1(x),

∣
∣
∣
∣
∣
∣
∣
∣
∣

(σtrial
n+1(x) − σn+1(x)) : C

−1(τ (x) − σn+1(x))+

+(Hαn(x) − An+1(x)) : H
−1(B(x) − An+1(x)) ≤ 0

∀ (τ ,B) ∈ E

where
σtrial

n+1(x) = C(∇sun+1(x) − εp
n(x))

of this error depends on the accuracy for finite time step of the time integration
scheme. This accuracy is, usually, assessed numerically with the so–called isoerror
maps (Krieg & Krieg, 1977; Schreyer et al., 1979; Ortiz & Popov, 1985).

In proposing the above time discrete scheme, we are faced with two questions:
one refers to the existence and uniqueness of the solution for the single nonlinear
variational problem while the second regards the convergence of the family of the
approximations with their respective rate. Unfortunately, for the formulation given
in Box 4.4, likewise the continuous formulation, there are no general results of well
posedness and, a fortiori, of convergence of the approximation. However, some
considerations can be done in merit, though of heuristic character, as extension of
those holding for formulations for which a complete analysis has been provided by
Han & Reddy (1999).

In stating the single one step variational problem relative to [tn, tn+1], the
state of the system at the time instant tn defined by εp

n(x), αn(x) is a data of the
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Figure 4.1: Effect of the time discretization error in the direction of the plastic flow, ε̇p(t) ≈
ε

p
n+1 − εp

n

kn

with t ∈ [tn, tn+1] for a perfect plasticity model with yield surface given by equation

f(σ) = 0.

problem whereas the unknown is given by the function un+1(x). Therefore, we
assume that the single nonlinear variational problem has solution, as long as very
general regularity properties are met by the data. This can be easily shown, for
example, for the time discrete scheme of the dual variational formulation for the
model of linear elasticity and associative plasticity with linear hardening, given in
Han & Reddy (1999), where (u,σ,A) are assumed as primary variables and the
change of data corresponds to the projection onto a closed convex set at a different
point.

Also, we require that εp
n(x), αn(x) are obtained from the pointwise solution

of the CInNP relative to the previous time interval [tn−1, tn] and to the solution
un(x). This condition, which can be expressed as continuity of the piecewise linear
interpolant of the discrete solutions {εp

n(x)}N+1
n=1 , {αn(x)}N+1

n=1 , is invoked in order
to obtain an a priori estimate for the family of solutions which is independent on
k. This is a basic result which is used for a compactness argument to prove finally
that as k → 0, the limit of the interpolants is in fact a solution of the continuous
problem. Part of the analysis of the semidiscrete scheme would be also an a priori
error estimate of the approximate solutions which would have in general the following
format

max
1≤n≤N

‖uex(x, tn+1) − un+1(x)‖ ≤ O(kq), q > 0, (4.1)

which describes the time discretization error with its dependence on the discretiza-
tion parameter k along with its rate of convergence and ‖•‖ is an appropriate norm.

Remark 4.4. In relation to the particular constitutive model, the solution of CInNP
can result in more or less complex algorithm. The procedures for its solution are
generally called constitutive update algorithms. In rate independent plasticity mod-
els, in particular, they are also referred to as the stress return algorithms, because
the stresses must be returned to the yield surface (Ortiz & Stainier, 1999). For
an overview of these procedures, we refer to Simo (1998); Armero & Pérez-Foguet
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Box 4.4. Fully implicit scheme of the problem given in Box 4.2

For: n = 1, 2, . . . , N

Given: External Loading bn+1(x) = b(•, tn+1), on Ω
tn+1(x) = t(•, tn+1), on ∂Ωt

State of the system at tn

∣
∣
∣
∣

εp
n(x) = εp(•, tn) ∈ E

αn(x) = α(•, tn) ∈ Λ

Find: un+1(x) = u(•, tn+1) ∈ V

Such That the following equation is satisfied:

〈σn+1(x),∇η(x)〉 = 〈bn+1(x),η(x)〉+ 〈tn+1(x),η(x)〉∂Ωt

∀η ∈ V0,

where σn+1(x) = σ(x, tn+1) is the stress tensor field obtained by solving,
at any point x ∈ Ω, the following constitutive nonlinear problem with
prescribed strain ε(x, tn+1) = ∇sun+1(x),

Constitutive Incremental Nonlinear Problem (CInNP)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ε(x, tn+1) = εe(x, tn+1) + εp(x, tn+1)

σ(x, tn+1) =
∂ψe

∂εe
(εe(x, tn+1))

A(x, tn+1) =
∂ψp

∂α
(α(x, tn+1))

εp(x, tn+1) − εp(x, tn)

kn

∈ F(σ(x, tn+1),A(x, tn+1))

α(x, tn+1) − α(x, tn)

kn

∈ G(σ(x, tn+1),A(x, tn+1))

(2002) and de Souza Neto et al. (2002).

We conclude this section by observing first that the nonlinear variational prob-
lem of Box 4.4 can be given the following compact form of a nonlinear variational
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equation (Rannacher & Suttmeier, 1998),

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Find: un+1(x) ∈ V

Such that:

L(∇sun+1,η)
def
=

def
= 〈σn+1

(
∇sun+1(x)

)
,∇η(x)〉 − 〈bn+1(x),η(x)〉 − 〈tn+1(x),η(x)〉∂Ωt = 0

∀η ∈ V0,

(4.2)
where the stress tensor

σn+1

(

εp
n(x), αn(x); εn+1(x) = ∇sun+1(x)

)

(4.3)

is obtained as part of the solution of the CInNP with data εp
n(x) and αn(x). It

is understood that, in (4.3), εn+1(x) must be considered as variable. Secondly, the
function L = L(∇sun+1,η) is defined over V×V0, where we recall V to be the space of
the kinematically admissible displacement fields un+1 = un+1(x), principal unknown
of the problem. In the time discrete problem, the displacement field un+1 = un+1(x)
may be any element of V.

4.4 The fully discrete problem: Constant finite

element mesh

The single one step problem (4.2) arising from the time discretization of the initial
boundary value problem has the same structure as an elliptic problem apart from
substitution into the equilibrium equation of the stress tensor with a nonlinear func-
tion of the displacement, un+1 = un+1(x), primary unknown of the problem. The
latter is therefore amenable to the discretization methods for this class of problems
(Glowinski et al., 1981) in particular the finite element method. In this way the
complete discretization of the initial boundary value problem is achieved, which is
referred to as the fully discrete scheme.

More precisely, approximations to the single nonlinear incremental boundary
value problem (4.2) with standard displacement finite element procedure are ob-
tained by simply replacing the infinite dimensional affine spaces V and V0 of the
trial functions, un+1 = un+1(x), and test functions, η = η(x), with finite dimen-
sional affine subspaces, Vh and Vh

0 , respectively, which are intended to be finite
element spaces. For the construction of such spaces with respective terminology, we
refer to standard textbooks on finite element methods (Ciarlet, 1978; Zienkiewicz &
Taylor, 2000).

The weak enforcement of the equilibrium with respect to only some test func-
tions produces an error which is referred to as the space discretization error. As it
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has been already noted for linear problems in Section 2.2, the main effect of this
error is the lack of the pointwise equilibrium over the domain Ω, along the bound-
ary traction ∂Ωt and the element boundaries. The latter, in turn, means lack of
continuity of the stress tensor field therein.

The discrete problem relative to the time interval [tn, tn+1] reads as follows

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Given: External Loading bn+1(x), on Ω
tn+1(x), on ∂Ωt

State of the system at tn

∣
∣
∣
∣

εp
n(x) ∈ E

αn(x) ∈ Λ

Find: uh
n+1(x) ∈ Vh

Such That
〈hσn+1(x),∇ηh(x)〉 = 〈bn+1(x),ηh(x)〉 + 〈tn+1(x),ηh(x)〉∂Ωt

∀ηh ∈ Vh
0 ,

(4.4)
where the stress tensor field hσn+1(x)¶ is the function defined by solving at any
point x ∈ Ω the CInNP for any given strain εh

n+1(x) = ∇su
h
n+1(x) and fixed data

εp
n(x),αn(x).

Since a complete theory for the fully discrete approximations to the displace-
ment formulation of the initial boundary value problem is still to be developed, the
considerations that follow will have, therefore, heuristic character and will assume
minimum regularity requirements. In rate independent plasticity with positive hard-
ening, this leads, in our case, to the assumption that εp(x, t), α(x, t) are continuous
in time and in space, whereas ε̇p(x, t), α̇(x, t) can experience discontinuity in time.

Remark 4.5. The following observations take their motivation primarily from the
analysis of fully discrete approximations to other formulations of plasticity, basically
the dual variational formulation of the model of linear elasticity and associative plas-
ticity with linear hardening (Johnson, 1976b, 1977; Hlaváček, 1980; Han & Reddy,
1999) and of other evolutive processes, in general, (Kacur, 1985; Evans, 1999) and in
particular, parabolic equations (Raviart & Thomas, 1983), and degenerate parabolic
equations (Nochetto et al., 1997; Chen et al., 2000a). Instrumental is also the work
by Dorfler & Wilderotter (2000), though for elliptic problems, on the development
of a posteriori error estimates which account for data error.

Likewise the Galerkin finite element approximation of the primal formulation
of an elliptic problem, we can, therefore, assume that the results of well posedness

¶ Hereafter, the symbol h(•) will refer to secondary variables which are obtained from the
solution of the CInNP for the prescribed strain εh

n+1. They do not have to be confused with the
respective finite dimensional discretizations, which are here not considered. Only the interpolation
of the primary variable, that is, the displacement field, has been assumed which is remarked with
the superscript h on the right.
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for the continuous problem (4.2) carry over also to its finite element counterparts
represented by problem (4.4); in particular, we emphasize the existence of solution
as long as the data εp

n(x),αn(x) satisfy general regularity properties.
The result of the approximation which involves only the unknown function

un+1(x) is an error whose value depends on the approximation properties of the
finite element subspaces. This is usually mirrored by an a priori error estimate of
the discretization error which is of the following type

‖un+1(x) − uh
n+1(x)‖ ≤ O(hp)

where h denotes the mesh size of the triangulation Th of the domain Ω associated
with the finite element space Vh, and un+1(x) is the solution of the continuous
problem (4.2). If we combine the above result with (4.1) and use the triangular
inequality, finally, we can obtain

max
1≤n≤N

‖uex(x, tn+1) − uh
n+1(x)‖ ≤ O(kq) +O(hp) (4.5)

which shows the effects of time and space discretization on the full discrete approx-
imation along with their respective order of convergence.

In posing problem (4.4), however, the data εp
n(x),αn(x) are unknowns, for

being solution at tn of the time discrete scheme. Therefore, a fully discrete approx-
imation to the problem (4.2), actually, calls also for an approximation to the data
of each nonlinear incremental boundary value problem.

If the finite element space Vh does not change from one time interval to the
other, a fully discrete scheme is formulated by assuming the data hεp

n(x), hαn(x),
which denote the pointwise solution at tn of the CInNP with hε

p
n−1(x), hαn−1(x)

and prescribed strain εh
n(x) = ∇su

h
n(x) corresponding to the finite element solution

at tn. As a result of this choice, the piecewise linear interpolant of the discrete
solutions {hεp

n(x)}N+1
n=1 , {hαn(x)}N+1

n=1 , is continuous. By exploiting then properties
of the equations, one can, therefore, envisage to get a uniform a priori estimate for
the family of solutions which proves to be crucial for the error analysis of the fully
discrete scheme as it results from the convergence studies carried out in Johnson
(1976b, 1977); Hlaváček (1980) and Han & Reddy (1999) which finally deliver an
error estimate in the form of relation (4.5).

The above considerations suggest that also other approximations to the data of
(4.2) can be imagined, provided that then it is possible to prove the convergence of
the resulting fully discrete problems. However, the effects of different approximations
to the data from the one proposed above and of change of finite element space from
one time step to the other, necessary in the adaptive finite element solution of the
given initial boundary value problem, are similar and related somehow to each other.
Both can be related, in fact, to the introduction of a discontinuity in the solution
as it will be shown in the next Section.
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4.4.1 Change of finite element mesh

In this Section we consider change of finite element mesh from one time interval to
the other and assume that we are able to solve the CInNP at any point x ∈ Ω. More
precisely, let Vhn and Vhn+1 be the finite element spaces adopted for the discretization
of the problem (4.2) relative to the time interval [tn−1, tn] and [tn, tn+1], respectively.
Set h = max

1≤n≤N
hn where hn is the meshsize of the triangulation Thn of the domain

Ω associated with the finite element space Vhn and denote with hnεp
n(x), hnαn(x),

hnσn(x), the pointwise solution of the CInNP corresponding to the finite element
solution uhn

n (x) at tn.
Assume hnεp

n(x), hnαn(x) as data of the problem (4.2) relative to [tn, tn+1] and the

Figure 4.2: External loads and Finite element solutions at tn and tn+1 with equilibration of the
initial state for change of finite element mesh Thn

→ Thn+1
at the time instant tn.

finite element space Vhn+1 for its discretization.
If we envision to solve first for ∆t → 0, that is, at tn + ∆t for ∆t very small

(henceforth, this time instant will be denoted as t+n ), one expects in general

hnεp
n(x) 6= hn+1εp

n(x), hnαn(x) 6= hn+1αn(x), hnσn(x) 6= hn+1σn(x),

where
hn+1εp

n(x), hn+1αn(x), hn+1σn(x)

are obtained as usual from the solution of the CInNP with data hnεp
n(x), hnαn(x),

and prescribed strain εhn+1
n (x) = ∇su

hn+1
n (x), where uhn+1

n (x) ∈ Vhn+1 is the finite
element solution at t+n . Indeed, hn+1σn(x) is in equilibrium with respect to Vhn+1 ,
whereas hnσn(x) is not if Vhn+1 6= Vhn , even though they correspond to the same
external load level at tn. Figure 4.2 sketches the different quantities in a finite
element solution with change of finite element mesh. The solution at t+n , sometimes,
is said to be obtained further to the equilibration of the initial state (Cirak & Ramm,
2000).
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Remark 4.6. If the finite element space does not change, i.e. Vhn = Vhn+1 , then it
is

hnεp
n(x) = hn+1εp

n(x), hnαn(x) = hn+1αn(x), hnσn(x) = hn+1σn(x),

that is, the interpolant will be continuous at tn.

Consider now also the solution at tn+1 obtained with data hn+1εp
n(x), hn+1αn(x)

and corresponding to the finite element solution u
hn+1

n+1 (x) ∈ Vhn+1 of (4.4). It is easy
to realize that the piecewise linear interpolant of the discrete solutions

. . . , hnεp
n(x)

︸ ︷︷ ︸

sol. at t−n

, hn+1εp
n(x)

︸ ︷︷ ︸

sol. at t+n

, hn+1ε
p
n+1(x)

︸ ︷︷ ︸

sol. at t−n+1

, . . .

. . . , hnαn(x)
︸ ︷︷ ︸

sol. at t−n

, hn+1αn(x)
︸ ︷︷ ︸

sol. at t+n

, hn+1αn+1(x)
︸ ︷︷ ︸

sol. at t−n+1

, . . .

will be discontinuous across the time node tn as is depicted in Figure 4.3 at a generic
point x ∈ Ω. As a result, the considerations of Section 4.4 holding for static finite

Figure 4.3: The time interpolant of the plastic strain at a generic point x ∈ Ω is discontinuous at
tn further to the change of finite element mesh Thn

→ Thn+1
.

element meshes can no more be extended and, consequently, nothing can be said,
in general, on the convergence of the interpolants as k, h → 0. In this case, in
fact, by accounting for the observations in Section 3.4, the residual error, which is
obtained by substituting the approximation into the general equations given in Box
4.2 and representing the forcing in the problem that defines the global error, has
two components: One component is regular, which is present also with static finite
element mesh and depends essentially on the time step and mesh size. The other
component is singular for the presence of the rate quantities ε̇p(x, t), α̇(x, t) and the
discontinuity jump in the time interpolant of εp and α. The singular components,
therefore, depend on the value of the discontinuities which, for the way the fully dis-
crete schemes have been formulated in this section, can be arbitrary. Consequently,
in principle, they can have an important influence on the global error. It is, there-
fore, clear that reliable a posteriori estimates of the error of such approximations
will have to depend also on these singular components of the residual.
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Remark 4.7. Convergence studies of fully discrete approximations in presence of
changing mesh are completely missing from the current literature, even for those
variational formulations of plasticity models which have been investigated in detail
in the case of finite element mesh constant in time. Furthermore, it must be noted
that the issue of convergence of fully discrete approximations in presence of evolving
finite element meshes is shared also by other evolutive processes, in general, as it
has been pointed out since by Dupont (1982). This problem, actually, calls for
constraints on the type of change of mesh as shown in Nochetto et al. (1997) and
Dawson & Kirby (1999) in order to deliver family of discrete schemes that are stable
and convergent. Also, it is interesting to note in the a posteriori error estimates of
these approximations the presence of terms that are due to change of mesh (Eriksson
& Johnson, 1991; Estep et al., 2000; Chen et al., 2000a).

In conclusion, if no change of mesh occurs, k and h are the only parameters
that control the accuracy of the approximation, thus, both a priori and a posteriori
error estimates will depend somehow on them. On the contrary, if change of mesh
occurs, we introduce a discontinuity in the solution which can be arbitrary. The
residual will have singular components depending on the jump. Since the error
depends on the residual, its estimates, both a priori and a posteriori, will have to
account for the discontinuity.

Also, the considerations expressed in this section point out an important issue
in presence of change of mesh. This is the development of a posteriori error estimates
which by including terms that depend on the jump allow one to assess the effects
of change of mesh and data for the solution of (4.4). We will see in Chapter 6 how
the error in the constitutive equations will account for the discontinuity in a natural
and consistent way.

Remark 4.8. A similar outcome, though starting from a different point of view,
can be retrieved from the analysis carried out in Rannacher & Suttmeier (1999),
which has been highlighted in section 2.3.2. The authors refer to a dual variational
formulation of plasticity and propose a splitting of the error which distinguishes the
component due to time discretization, to the space discretization and to the effect,
through the stability of the nonlinear incremental boundary value problem, of the
error for using different data in posing this problem.

4.5 Overview on the different definitions of the

initial state. Transfer procedures

In the previous section, we have assumed the data hnεp
n(x), hnαn(x) to be known at

any point x ∈ Ω and equal to the solution at tn relative to the previous time interval
[tn−1, tn]. However, in the actual computation, we do not need in general to know
such fields but only their value at discrete points, namely the integration points of
each element. In fact, the integrals that appear in the variational formulation (4.4)
are seldom computed exactly. Instead, they are approximated through a process of
numerical integration, such as, for instance, Gaussian quadrature formula.
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Let Ω
hn+1

l ∈ Thn+1 be a generic element of the triangulation Thn+1 and denote

with x
hn+1

l,j ∈ Ω
hn+1

l the jth Gauss point of the element Ω
hn+1

l and ngp their number.
Problem (4.4), formulated next with generic data ε̃p

n(x), α̃n(x), reads as

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Given: ∀Ω
hn+1

l ∈ Thn+1 and for j = 1, . . . , ngp,

External Loading bn+1(x
hn+1

l,j )

State of the system at tn

∣
∣
∣
∣
∣
∣

ε̃p
n(x

hn+1

l,j )

α̃n(x
hn+1

l,j )

Find: u
hn+1

n+1 (x) ∈ Vhn+1

Such that:
∑

Ω
hn+1
l

∈Thn+1

ngp
∑

j=1

jl,jwl,j

{
hn+1σn+1

(
∇su

hn+1

n+1 (x
hn+1

l,j )
)
: ∇ηhn+1(x

hn+1

l,j )+

−bn+1(x
hn+1

l,j ) : ηhn+1(x
hn+1

l,j )
}

= 0, ∀ηhn+1 ∈ Vhn+1

0 ,

(4.6)

where the stress tensor hn+1σn+1

(
ε

hn+1

n+1 (x
hn+1

l,j ) = ∇su
hn+1

n+1 (x
hn+1

l,j )
)

is obtained by

solving at x
hn+1

l,j the CInNP with data ε̃p
n(x

hn+1

l,j ), α̃n(x
hn+1

l,j ) and prescribed strain

ε
hn+1

n+1 (x
hn+1

l,j ) = ∇su
hn+1

n+1 (x
hn+1

l,j ). The symbols wl,j, jl,j denote the weight and the
value at the Gauss points of the Jacobian of the transformation of the master ele-
ment onto the current element in the Gaussian quadrature scheme (Ciarlet, 1978;
Zienkiewicz & Taylor, 2000; de Souza Neto et al., 2002). For the sake of notation,
the work of the traction forces in (4.6) has been dropped.

The choice of the quantities in rate form as secondary variables, for which
no a priori interpolation assumptions have been made, and the use of backward
Euler as time discrete scheme poses, however, the question on how to define the
data ε̃p

n(x
hn+1

l,j ) and α̃n(x
hn+1

l,j ) for the InBVP in the case the finite element mesh
adopted for its discretization is different from the one used in the previous time
interval. In this case, inasmuch as the mesh changes across the time node tn, the
Gauss points change as well and it is no more possible to define the history of the
secondary variables at these points if they have not been considered from the initial
time t = 0.

The procedures currently in use for the definition of these data, in general, try
to compute the value of the unknowns fields ε̃p

n(x
hn+1

l,j ), α̃n(x
hn+1

l,j ) at the new inte-

gration points, x
hn+1

l,j ∈ Ω
hn+1

l with Ω
hn+1

l ∈ Thn+1, in terms of the values hnεp
n(xhn

e,i),
hnα(xhn

e,i), solution relative to the previous time interval [tn−1, tn] at the old integra-

tion points, xhn

e,i ∈ Ωhn

e with Ωhn

e ∈ Thn.
These procedures are usually known by the name of Transfer of Data and

represent a very delicate issue for the global accuracy of a finite element adaptive
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solution. With this regard, in fact, several vaguely defined properties are usually
invoked for a mapping scheme in order to prevent corrupting the quality of the
resulting finite element solution. These are, for instance, listed in Perić et al. (1996)
and Rashid (2002), among others, and are referred to as self-consistency, locality,
consistency with the constitutive equations, equilibrium, compatibility of the state
transfer with the displacement field on the new mesh, minimisation of the numerical
diffusion of these variables, just to mention a few. The remapping schemes proposed
in literature attempt somehow to meet these properties and are different from each
other according to the main aspect they address. As a result, it appears difficult
trying to draw a classification. However, the fundamental approaches and ideas can
be referred by some means to the following procedures:

• Variationally Consistent Transfer

• Weak Enforcement Continuity Transfer

• Smoothing Transfer

These transfer processes are in the following described succinctly with reference
to the specific problem at hand. This means that only transfer of εp and α will be
analysed. It is also worth noting that all the following operations share the same
underlying idea of defining first a field for the state variables which depends on
the old mesh with its relative distribution of the elemental Gauss points. This
field is then transformed, according to the specific procedure, into a new field on
the new mesh which allows the sampling at the new Gauss points. In Chapter
6, in comparing the effects of the above transfer procedures, we will consider the
state variables at the new Gauss points after equilibration of the initial state and
along with an assumption of prolongation over each element. The resulting function
is denoted by hn+1(•)n. The difference between the two fields, hn(•)n − hn+1(•)n,
defines the discontinuity. Finally, it must be observed that it does not have to be
of concern that the incremental form of the constitutive equations may be satisfied
only at the Gauss points whereas it may be violated in other points of the domain
Ω because of the prolongation operation. The error in the constitutive equations
will quantify this discrepancy and in this sense, it must be considered as the error
associated with the given assumption for the variables distribution.

4.5.1 Variationally consistent transfer

We define variationally consistent transfers as those remapping procedures where the
initial data at tn for the solution of the nonlinear incremental boundary value prob-
lem relative to the time step [tn, tn+1] is obtained from sampling at new Gauss points
the solution of the variational formulation of the nonlinear incremental boundary
value problem relative to the time step [tn−1, tn]. For this to happen, the equations
that define the secondary variables, and appearing as data of the problem, must be
expressed in a variational form and consequently an interpolation for those variables
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must be prescribed. It is this variational formulation that provides the data for the
fully discrete problem in case of change of mesh. With the aim of shedding light on
this class of transfers, which have been analysed by Ortiz and coworkers in Ortiz &
Quigley (1991); Camacho & Ortiz (1997) and Radovitzky & Ortiz (1999), it appears
appropriate first to consider for motivation the simpler model problem of heat con-
duction and discuss the several definitions of data in posing the fully discrete scheme
obtained by a backward Euler integration in time and finite element interpolation in
space. This analysis will serve as a motivation to introduce the so–called variational
consistent transfers for the problem at hand.

4.5.1.1 Heat conduction

We consider the classical heat conduction problem in an isotropic body Ω ⊂ Rd with
heat capacity λ = 1 and conductivity µ = 1 described by the following equations

Find u = u(x, t) with x ∈ Ω, t ∈ I = [0, T ]
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂u

∂t
− ∆u = f in Ω × I

u(x, t) = 0 in ∂Ω × I (boundary condition)

u(x, t = 0) = u0 in Ω at t = 0 (initial condition)

(4.7)

In (4.7), u(x, t) is the temperature at x ∈ Ω at time t ∈ I, u0 is a given initial
temperature and f is a given heat production. The symbol ∆ denotes the Laplacian
operator.

In order to define the functional setting in which the weak form of (4.7) is
posed, we need first to introduce the following notation. Let H1

0 (Ω) denote the
Sobolev space of functions of L2(Ω) with the first derivatives in the sense of distri-
butions belonging to L2(Ω) and trace vanishing on ∂Ω (Raviart & Thomas, 1983)
and with (•, •) the inner product in L2(Ω). Also, denote with C0(I;V) and L2(I;V)
the space of the vector valued functions defined over the time interval I and with
values in the space of functions V which are continuous and square integrable over
I, respectively.

By assuming u0 ∈ H1
0 (Ω) and f ∈ L2(I;L2(Ω)), the weak form of (4.7) reads

as follows (Raviart & Thomas, 1983)

Data u0 ∈ H1
0 (Ω), f ∈ L2(I;L2(Ω))

Find u ∈ L2(I;H1
0 (Ω)) ∩ C0(I;H1

0 (Ω))
∣
∣
∣
∣
∣
∣

d

dt
(u(t), v) + a(u(t), v) = (f(t), v) ∀ v ∈ H1

0 (Ω),

u(0) = u0

(4.8)

where the time derivative is meant in the sense of distributions over I and the
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bilinear form a(u(t), v) is defined as follows

a(u(t), v) =

d∑

i=1

(
∂u

∂xi

,
∂v

∂xi

).

In (4.8) we have identified the real function u(x, t) defined over Ω × I with the
vector valued function u(t) defined over I and values in the space of functions of Ω
into R (Raviart & Thomas, 1983).

We consider fully discrete schemes for the problem (4.8) obtained by a back-
ward Euler discretization in time and a Galerkin approximation in space. We refer,
therefore, to the same notation as introduced in Section 4.3 and 4.4.1; that is,
In+1 = [tn, tn+1] denotes the generic time interval of the partition of the time inter-
val I of interest, and Vhn+1 is the conforming finite element space associated with
the mesh Thn+1 for the discretization of the one single step problem relative to In+1.

The fully discrete scheme analysed in Dupont (1982) is

For n = 1, . . . , N

Data: uhn
n ∈ Vhn

Find: u
hn+1

n+1 ∈ Vhn+1

∣
∣
∣
∣
∣
∣

1

kn

(u
hn+1

n+1 , v
hn+1) + a(u

hn+1

n+1 , v
hn+1) = (fn+1, v

hn+1) +
1

kn

(uhn

n , vhn+1)

∀ vhn+1 ∈ Vhn+1

(4.9)

where for n = 1, uh1
1 denotes any element of the space H1

0 (Ω), whose choice is
relevant for the error on the initial state u0.

Remark 4.9. Problem (4.9) is the finite element formulation of an elliptic equation
of the form (I − kn∆)u = knf + un (Thomée, 1997).

In Dupont (1982) an asymptotic a priori error estimate is obtained under
fairly general assumptions on the change of mesh. These are: Each mesh Tn+1 is a
refinement of some given coarse partition T of Ω. Moreover, Tn+1 is obtained by at
most one level of refinement or coarsening of the mesh Tn.

An improvement of the rate of convergence, and with similar constraints on
the change of mesh, has been obtained by Eriksson & Johnson (1991) who consider,
however, the discontinuous Galerkin discretization in time with order zero, which
reduces to the backward Euler.

We note that, in (4.9), we must compute (uhn

n , vhn+1). That is, we have to
compute the L2 projection of the solution uhn

n ∈ Vhn relative to the previous time
step, onto Vhn+1 . If numerical quadrature is used, we get

(uhn

n , vhn+1) =
∑

Ω
hn+1
l

∈Thn+1

ngp
∑

j=1

jl,j wl,j u
hn

n (x
hn+1

l,j ) vhn+1(x
hn+1

l,j ).

117



Thus, the data of the one step problem relative to the new mesh Vhn+1 are obtained
by sampling the field uhn

n , solution of the variational problem relative to the previous

time step, at the new Gauss points x
hn+1

l,j . For this reason, the term (uhn

n , vhn+1) is
referred to as the variationally consistent data.

Remark 4.10. The previous sampling does not involve any complication, for the
variable u is a primary variable of the formulation, therefore, it is defined over all
the domain Ω as finite element interpolation.

Nevertheless, also other fully discrete schemes have been proposed in relation to
the way that the term (uhn

n , vhn+1) is treated. For example, in the analysis of the two–
phase Stefan problem carried out by Nochetto et al. (1997) the aforementioned term
is replaced in (4.9) with (IVhn+1uhn

n , vhn+1), where IVhn+1 is the nodal Lagrangian
operator with respect to Vhn+1 (Ciarlet, 1978). The resulting fully discrete scheme is
stable and convergent under similar constraints on the change of the finite element
mesh.

Another interesting fully discrete scheme is proposed by Dawson & Kirby
(1999) for the analysis of 1D linear parabolic problems discretized in space with
mixed finite element method. A piecewise constant approximation is assumed for
the variable u appearing in rate form. The term (uhn

n , vhn+1) is replaced with

(ūn, v
hn+1)

where now ūn is a piecewise linear function obtained by ad hoc postprocessing of
the piecewise constant function uhn

n . In this case, the authors prove convergence of
the resulting discrete scheme which preserves the optimal convergence rate under
very general changes in the mesh.

In conclusion, the definition of data as given in Nochetto et al. (1997) and
in Dawson & Kirby (1999) are not variationally consistent, for the data of the one
single fully discrete problem is not obtained from sampling at the new Gauss points
the solution of the problem relative to the previous time step. Nevertheless, the
resulting fully discrete schemes are convergent and stable.

Remark 4.11. For the definition of an a posteriori error estimate, it is not im-
portant to have a convergence result of the fully discrete scheme. This result is
important, however, in the context of effectivity of the estimate and convergence of
the adaptive process. This information is, in turn, implied by bounding above the a
posteriori estimate with an a priori error estimate (Eriksson & Johnson, 1991).

4.5.1.2 Weak enforcement of the constitutive equations

The unambiguous definition of the initial state for the fully discrete scheme has
been made possible by the assumption of the state variables appearing as data of
the problem as primary variables of the formulation. As a result, their values could
then be computed at any point of the domain by means of the respective interpo-
lation functions. In a displacement formulation, on contrary, the primary unknown
is only the displacement field whereas the secondary variables are obtained from
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the pointwise solution of the equations used for the reduction of the global prob-
lem with respect to only the displacement, that is, the CInNP. If these equations
are also imposed in weak form along with an interpolation assumption for the sec-
ondary variables involved, it will be the same variational formulation to indicate
how to state the data for the fully discrete problem in case of change of mesh. This
observation, therefore, suggests enforcement of the CInNP in a weak form and not
in a pointwise manner, as it is implied by the standard displacement formulation.
However, inasmuch as we are interested to perform transfer of the variables obtained
from the displacement formulation, we must ensure that the solution obtained from
this more general variational formulation conforms to the one obtained from the
displacement formulation.

This can be easily achieved, as it is asserted in Ortiz & Quigley (1991),
by an appropriate choice of the interpolation functions for the secondary vari-
ables and assuming the same element–base quadrature scheme. Since the fields
σ(x), εp(x), α(x) are not involved in spatial derivative in the general variational
formulation, unlike the displacement field u(x), the respective finite element inter-
polation functions are not required to be continuous over the element and across
the element boundaries (Ortiz & Quigley, 1991) but only to meet general regularity
properties. For example, the interpolated fields σ(x), εp(x),α(x) must be bounded
(Radovitzky & Ortiz, 1999) or at most square integrable over Ω. This allows the
variational equations of the constitutive equations to be imposed element by ele-
ment.

Furthermore, if we assume the values of the field at the quadrature points as
degrees of freedom for the element interpolant of the state variable, then the Galerkin
finite element approximation becomes equivalent to the set of equations that enforce
the constitutive equations at each Gauss point of the element. This equivalence of
the displacement formulation based on element quadrature with underlying more
general variational formulations will be shown next for the u − p formulation of
linear elasticity and for a mixed formulation of plasticity which enforces in weak
form some equations of the incremental form of the evolution laws.

In the u−p formulation of linear elasticity, the displacement u and the pressure
p are assumed as independent variables. The additional variational equation other
than the weak form of the equilibrium equation, is, therefore, given by (Bathe, 1996)

∫

Ω

(
p

κ
+ εv)δp dΩ = 0, ∀ δp ∈ L2(Ω) (4.10)

where δp denotes the weighting function, κ is the bulk modulus,

κ =
E

3(1 − 2ν)
,

and εv is the volumetric strain,

εv = εxx + εyy + εzz.
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If we replace the space of the test functions with a finite dimensional space Phn+1

built from discontinuous functions, and the degree of freedom of the element inter-
polant are the values of the function at the Gauss points of the element, equation
(4.10) can be read element by element

∫

Ω
hn+1
l

(
p

κ
+ εv)δp

hn+1 dΩ = 0, ∀ δphn+1 ∈ Phn+1 . (4.11)

If element basis quadrature is adopted, one gets

p(x
hn+1

l,j )

κ
+ εv = 0

which is the constitutive equation for the pressure enforced at the Gauss point
x

hn+1

l,j . This is an example of limitation principle for mixed formulations introduced
by Fraeijs de Veubeke (1965). This principle shows that no particular advantage is
gained by the use of the mixed formulation against the displacement one with the
above choice of the interpolation functions (Malkus & Hughes, 1978). However, this
is of no concern, for here we are interested that such equivalence with an underlying
mixed formulation does exist.

In the mixed formulation of plasticity given in Simo et al. (1989) u, σ, α and
the plastic multiplier λ are the independent variables. If we introduce the following
set

Kp =
{
δλ ∈ L2(Ω)|δλ ≥ 0

}

the additional variational equations, other than the weak form of the equilibrium
equation, are obtained by enforcing in a weak sense the following equations of the
incremental form of the evolution laws
∫

Ω

[
∇sun+1 − εp

n − ∂ψ∗
e

∂σ
(σn+1) − λn+1

∂f

∂σ
(σn+1An+1)

]
: δσ dΩ = 0, ∀δσ ∈ (L2(Ω))6

∫

Ω

[
−
∂ψ∗

p

∂A
(An+1) +

∂ψ∗
p

∂A
(An) − λn+1

∂f

∂A
(σn+1An+1)

]
: δαdΩ = 0, ∀δα ∈ (L2(Ω))ndim

∫

Ω
f(σn+1,An+1)δλdΩ = 0, ∀δλ ∈ Kp

where δσ, δα, δλ denote the weighting functions and ndim equals the number of
components of the tensor α with respect to a given basis. All the other equations
of the constitutive model, on the other hand, are enforced pointwise.

For illustrative purposes, likewise the previous example, only the affine space
of the test functions is replaced with conforming finite element spaces. If these
spaces are built from discontinuous functions and the element shape interpolation
functions of δσ, δα, δλ have the value at the Gauss points as degrees of freedom,
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the discrete equations can be posed element by element

∀Ω
hn+1

l ∈ Thn+1
∫

Ω
hn+1
l

[
∇sun+1 − εp

n − ∂ψ∗
e

∂σ
(σn+1) − λn+1

∂f

∂σ
(σn+1An+1)

]
: δσ

hn+1

l dΩ = 0

∫

Ω
hn+1
l

[
−
∂ψ∗

p

∂A
(An+1) +

∂ψ∗
p

∂A
(An) − λn+1

∂f

∂A
(σn+1An+1)

]
: δα

hn+1

l dΩ = 0

∫

Ω
hn+1
l

f(σn+1,An+1)δλ
hn+1

l dΩ = 0

and after using element based quadrature, one gets

∀Ω
hn+1

l ∈ Thn+1

for j = 1, . . . , ngp

ε
p
n+1(x

hn+1

l,j ) − εp
n(x

hn+1

l,j ) = λn+1(x
hn+1

l,j )
∂f

∂σ
(σn+1(x

hn+1

l,j )An+1(x
hn+1

l,j ))

−αn+1(x
hn+1

l,j )) + αn(x
hn+1

l,j )) = λn+1(x
hn+1

l,j )
∂f

∂A
(σn+1(x

hn+1

l,j )An+1)(x
hn+1

l,j )

f(σn+1(x
hn+1

l,j ),An+1(x
hn+1

l,j )) = 0

which enforce at the Gauss points x
hn+1

l,j of each element Ω
hn+1

l the equations of the
incremental form of the evolution laws which have been considered in weak form.

The previous examples indicate that, in general, the displacement formulation
of the incremental boundary value problem for the time step [tn−1, tn] can be ob-
tained from an underlying more general variational formulation which has also εp

and α as independent variables. In this case, the following interpolation assumptions
must hold over each element Ωhn

e ∈ Thn for the components (εp)a,b and (α)a,b,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(
hn
eε

p
n

)

a,b
(x) =

ngp
∑

i=1

e,i
N

hn

(εp)a,b
(x)

(
hn

e,i ε̄
p
n

)

a,b

(
hn

eαn

)

a,b
(x) =

ngp
∑

i=1

e,i
N

hn

(α)a,b
(x)

(
hn

e,iᾱn

)

a,b

(4.12)

with the elemental shape functions being piecewise continuous and meeting the
following requirements ∣

∣
∣
∣
∣
∣

e,i
N

hn

(εp)a,b
(xhn

e,k) = δi,k

e,i
N

hn

(α)a,b
(xhn

e,k) = δi,k.
(4.13)

In equation (4.13) δi,k is the Kronecker symbol whereas in equation (4.12) the coef-
ficients

(
hn

e,i
¯(•)n

)

a,b
identify with the value of the component of the respective field
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at the Gauss points xhn

e,i . The latter results from the displacement finite element
solution at tn.

Figure 4.4 depicts some possible choices for e,i
N

hn

ε
p
ab

, for example, where ε
p
ab

denotes a component of the second order tensor εp.

�hn
e

xhn
e,k

e,i�hn�
ab
p

e,i�hn�
ab
p

1 1

�hn
e

xhn
e,k

Figure 4.4: Possible choices for the interpolation functions of the internal variables which comply
with the requirements of equation (4.13).

Finally, the state of the system at t+n , that is, ε̃p
n(x

hn+1

l,j ) and α̃n(x
hn+1

l,j ), is

obtained by sampling the fields (4.12) at the new Gauss points x
hn+1

l,j ∈ Ω
hn+1

l .

Remark 4.12. The equivalence of the displacement formulation with mixed vari-
ational formulations for models of associative plasticity has been object of analysis
also in Comi & Perego (1995) and in Alfano et al. (1998). In these studies, the
relevant variational equations are obtained as stationary conditions of a suitable
functional. Hence, with an appropriate choice of the interpolation functions for the
secondary variables, the equations of the displacement formulation using element
basis quadrature are retrieved. These interpolations for the state variables may,
therefore, be assumed as definition of other variationally consistent transfers in the
sense of Ortiz & Quigley (1991).

In summary, variationally consistent transfer is obtained by making an inter-
polation assumption for εp and α which complies with the requirements of equation
(4.13) and by sampling these fields at the Gauss points of the new mesh. Given the
generality of the conditions (4.13), the specific choice of the interpolation functions
comes from considerations of the accuracy of the solution. For example, Ortiz &
Quigley (1991) refer to quadratic triangular elements with three Gauss points, thus
assuming a linear interpolation for the secondary state variables. However, it was
then noted in Camacho & Ortiz (1997), that the local properties of the solution at
the Gauss points, in particular the isochoricity of the plastic strain, was not pre-
served by the transfer because of the linear interpolation. Thus, a first cure was
to apply the transfer procedure to the logarithmic measures of the plastic strain
rather than to the plastic strain. However, in areas undergoing rapid transients,
the piecewise linear interpolation was observed to contain considerable noise away
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from the Gauss points. This effect was therefore mitigated by smoothing the state
variable fields prior to effecting their transfer. In this sense, however, the technique
resembles the smoothing technique which is to be described next. In Radovitzky &
Ortiz (1999), on the other hand, the authors consider a piecewise constant distribu-
tion of the state variables over the Voronoi cells (Frey & George, 2000), of all the
Gauss points with respect to the whole domain. This results in defining the value
at the new Gauss point equal to the one relative to the nearest Gauss point of the
old mesh. With this choice for the interpolation of the state variables, the local
properties of the solution are preserved, as well.

Remark 4.13. The definition of a variationally consistent transfer has the only
advantage for providing naturally a variational setting where an error analysis could
be carried out more easily. The outcome of this analysis would then be an error
estimate which accounts for the weak enforcement, against the pointwise, of the
equilibrium and of the incremental constitutive equations. However, this analysis
seems to have been invoked but never actually performed by the cited authors. We
will discuss in the following Chapters that the error in the constitutive equations
will be able to account for the effects of the above approximations, in addition to
the time discretization error in replacing the initial value constitutive problem with
the incremental constitutive problem. In conclusion, it is worth noting that the
definition of a variationally consistent transfer, by itself, does not guarantee that
the most accurate adaptive finite element solution is delivered, as has been pointed
out in the previous Section in the analysis of the heat conduction problem.

4.5.2 Weak enforcement of the continuity

This transfer procedure is obtained from an approximation a la Galerkin of the
variational equation which imposes in weak form the continuity across the time
node tn of the variables which appear as data of the InBVP.

Let us assume, in the following, as general regularity property that ˜(•)n ∈
(L2(Ω))ndim and also that (•)n ∈ (L2(Ω))ndim , with ndim equal to the number of
components of the respective tensor field with respect to a given basis. The field
˜(•)n is the data for the InBVP whereas (•)n is relative to the solution at the previous

time interval.
The following condition

〈 ˜(•)n − (•)n, θ〉 = 0, ∀θ ∈ (L2(Ω))ndim (4.14)

enforces, in the weak form, the continuity of the field (•)n across the time node tn
with 〈•, •〉 being an inner product for the space (L2(Ω))ndim .

In Rashid (2002), condition (4.14) is enforced in a Galerkin sense by replacing
the infinite dimensional space (L2(Ω))ndim with finite dimensional spaces defined
by piecewise constant functions representing the distribution assumption for the
variables εp

n and αp
n. These spaces are defined by constant functions over the Voronoi

tessellation of each element with respect to its integration points and are denoted
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next with Chn and Chn+1 relative to Thn and Thn+1, respectively. If ωhn

e,i is the Voronoi

cell relative to the point xhn

e,i ∈ Ωhn
e , the field hnεp

n(x), for instance, is defined as
follows

hnεp
n(x) =

∑

Ωhn
e ∈Thn

ngp
∑

i=1

I
ω

hn
e,i

(x) hnεp
n(xhn

e,i)

where I
ω

hn
e,i

(x) is the following function

I
ω

hn
e,i

(x)
def
=

{

1 if x ∈ ωhn

e,i

0 if x ∈ Ω − ωhn

e,i

and hnεp
n(xhn

e,i) are the computed values from the solution at the previous time in-
terval [tn−1, tn].

Likewise, the data field will be represented by

ε̃p
n(x) =

∑

Ω
hn+1
l ∈Thn+1

ngp
∑

j=1

I
ω

hn+1
l,j

(x) ε̃p
n(x

hn+1

l,j )

where ε̃p
n(x

hn+1

l,j ) are the unknowns to be determined.
Thus, equation (4.14) can be used to formulate the following problem,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Given: hnεp
n(x) ∈ Chn

Find: ε̃p
n(x) ∈ Chn+1

Such that:

〈hnεp
n − ε̃p

n, θ〉 = 0, ∀θ ∈ Chn+1

(4.15)

which finally delivers ε̃p
n(x) ∈ Chn+1 as projection of hnεp

n(x) ∈ Chn onto Chn+1 with
respect to the inner product 〈•, •〉 of (L2(Ω))ndim .

Same procedure can be applied to compute α̃n(x) ∈ Chn+1 .
By definition, this transfer is, therefore, self-consistent, inasmuch as it is a

projection operator. Furthermore, because of the prolongation assumption into
piecewise constant functions, it preserves the local character of the state variables
at the relative Gauss point, as well.

4.5.3 Smoothing transfer

This procedure represents perhaps the most widely used remapping algorithm in
solid mechanics applications for its relatively simple implementation. Details on the
transfer operation can be found, among others, in Lee & Bathe (1994) and Perić
et al. (1996). Next, we just sketch the main steps which are summarized in Figure
4.5. The values of the state variables (•) at the old Gauss points, (•)(xhn

e,i), are first

transferred to the nodes of the old mesh, e,i(•)(xhn

N ), possibly also with a weight.
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(•)(xhn

e,i)
(a)−→ e,i(•)(xhn

N )
(b)−→ (•)(xhn

N )
(c)−→ (•)(xhn)

(d)−→

(d)−→ (•)(xhn+1) = IVhn+1
(•)(xhn)

(e)−→ (•̃)(xhn+1

l,j )

Figure 4.5: Smoothing transfer. (a) Extrapolation of Gauss points value to nodes of old mesh; (b)
Average at nodes of old mesh; (c) Finite element interpolation on old mesh; (d) Nodal interpolation
onto new mesh; (e) Sampling at new Gauss points

A weighted average is then carried out at each node, (•)(xhn

N ), and a smooth field,
(•)(xhn), is consequently defined by interpolation of the nodal values by means of
the basis functions of the finite element space, Vhn , associated with the old mesh.
The nodal interpolant of this field with respect to the new finite element space,

(•)(xhn+1) = IVhn+1
(•)(xhn), is constructed and the resulting field is sampled at

the new Gauss points delivering therein the transferred values of the state variables,
(•̃)(xhn+1

l,j ).
Some of the above steps can be by–passed and each of them can be tackled in

different ways, delivering a fairly large spectrum of transfer procedures. On one end,
there are those that obtain the values at the new Gauss points directly in terms of the
values at the old Gauss points by means of interpolations which can be global or local
over predefined neighbourhoods of the new Gauss points, such as in Tabbara et al.
(1994); Boroomand & Zienkiewicz (1998) and Villon et al. (2000). On the other end,
there are the procedures described in Figure 4.5, such as in Lee & Bathe (1994) and
Perić et al. (1996). However, when the extrapolation to the nodes is considered, this
represents a delicate point of the whole transfer process. Many studies have been
carried out in the field of the so-called recovery procedures and various schemes
such as least square fitting (Hinton & Campbell, 1974), superconvergence–patch
recovery (SPR) (Zienkiewicz & Zhu, 1992a), moving least square (Tabbara et al.,
1994), etc. have been proposed. Despite its simplicity, the procedure however is not
self-consistent and if frequent remeshing takes place diffusion of plastic strain can
spread all over the domain because of the smoothing operation. Also, special care
must be paid in accepting the transferred values. In fact, some properties can not be
inherited by the values at the new Gauss points, namely the incompressibility of the
plastic strain, for this constraint does not commute in general with the extrapolation
operation.

Remark 4.14. The previous classification is by no means exhaustive. A fairly
general up–date account of current adaptive strategies in elastoplasticity can be
found, however, in Ladevèze & Oden (1998).

125



4.6 Numerical techniques. Newton-Raphson

method

Without loss of generality and only for notational convenience, in the following we
refer to the formulations of the discrete problems given in Section 4.4 rather than to
problem (4.6), which is the one to be solved in an actual computation. Nevertheless,
the considerations are general and can be easily adapted to (4.6).

The discrete problem (4.4), which here we formulate with generic data ε̃p
n(x),

α̃n(x), represents an algebraic system of nonlinear equations that is convenient to
write in the following form,

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Data: External Loading bn+1(x), on Ω
tn+1(x), on ∂Ωt

State of the system at tn

∣
∣
∣
∣

ε̃p
n(x) ∈ E

α̃n(x) ∈ Λ

Find: u
hn+1

n+1 (x) ∈ Vhn+1

Such that: L(∇su
hn+1

n+1 ,η
hn+1)

def
=

def
= 〈hn+1σn+1

(
∇su

hn+1

n+1 (x)
)
,∇ηhn+1(x)〉+

−〈bn+1(x),ηhn+1(x)〉 − 〈tn+1(x),ηhn+1(x)〉∂Ωt = 0

∀ηhn+1 ∈ Vhn+1

0 ,

(4.16)

where the stress tensor hn+1σn+1

(
ε

hn+1

n+1 (x) = ∇su
hn+1

n+1 (x)
)
, we recall, is the function

of ε
hn+1

n+1 defined implicitly at any point x ∈ Ω by the solution of the following
problem with generic data ε̃p

n(x), α̃n(x),
∣
∣
∣
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∣
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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∣
∣
∣
∣
∣

Data: ε̃p
n, α̃n

Given: ε
hn+1

n+1 = ∇su
hn+1

n+1 (x)

Find: hn+1εe
n+1,

hn+1ε
p
n+1,

hn+1αn+1;
hn+1σn+1,

hn+1An+1

Such that: ε
hn+1

n+1 = hn+1εe
n+1 + hn+1ε

p
n+1

hn+1σn+1 =
∂ψe

∂εe
(hn+1εe

n+1);
hn+1A(x, tn+1) =

∂ψp

∂α
(hn+1αn+1)

hn+1ε
p
n+1 − ε̃p

n

kn

∈ F(hn+1σn+1,
hn+1An+1)

hn+1αn+1 − α̃n

kn

∈ G(hn+1σn+1,
hn+1An+1)

(4.17)
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For the considerations of Section 4.4 we assume that problem (4.16) has solution for
generic data ε̃p

n(x),α̃n(x) as long as minimum regularity requirements are satisfied.

Remark 4.15. The functional L = L(∇su
hn+1

n+1 ,η
hn+1) is defined over Vhn+1 ×Vhn+1

0 .

However, next, whenever necessary, we will refer only to the dependence on u
hn+1

n+1 ∈
Vhn+1 .

There exist several techniques to solve the system (4.16) (Crisfield, 1991; Den-
nis & Schnabel, 1996) which are mostly of iterative type. They, fundamentally,
differentiate each other for their rate of convergence and for being locally or globally
convergent according to whether or not, they require a starting value which is close
to the exact solution.

A technique particularly attractive is the fully consistent Newton’s method
which replaces iteratively in the equation L(∇su

hn+1

n+1 ,η
hn+1) = 0 the function

L(∇su
hn+1

n+1 ,η
hn+1) by its first order expansion around the point u

hn+1,(i)
n+1 ∈ Vhn+1 (Le

Tallec, 1994; Bonet & Wood, 1997). Further to the assumption of small displace-
ments, this is obtained simply by replacing the stress function in the weak form of
the equilibrium with its first order Taylor series, consequently the generic iterate
u

hn+1,(i+1)
n+1 is obtained by solving the following linear system:
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∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
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∣

Data: u
hn+1,(i)
n+1 ∈ Vhn+1

Find: u
hn+1,(i+1)
n+1 ∈ Vhn+1

〈D hn+1σn+1

(

∇su
hn+1,(i)
n+1

)[

∇su
hn+1,(i+1)
n+1 −∇su

hn+1,(i)
n+1

]

,∇sη
hn+1〉 =

= 〈bn+1,η
hn+1〉 + 〈tn+1,η

hn+1〉∂Ωt − 〈hn+1σn+1

(

∇su
hn+1,(i)
n+1

)

,∇sη
hn+1〉

∀ηhn+1 ∈ Vhn+1

(4.18)

where hn+1σn+1

(

∇su
hn+1,(i)
n+1

)

is obtained from the solution, at any point x ∈ Ω, of

the problem (4.17) with ε
hn+1

n+1 (x) = ∇su
hn+1,(i)
n+1 (x) and data ε̃p(x), α̃(x), whereas

D hn+1σn+1

(

∇su
hn+1,(i)
n+1

)[

∇su
hn+1,(i+1)
n+1 −∇su

hn+1,(i)
n+1

]

(4.19)

is the directional derivative of the function hn+1σn+1 = hn+1σn+1

(

ε
hn+1

n+1 (x)
)

at

ε
hn+1

n+1 = ε
hn+1,(i)
n+1 along the direction ∆ε

hn+1

n+1 = (ε
hn+1,(i+1)
n+1 − ε

hn+1,(i)
n+1 ), and is referred

to as the algorithmic stiffness (Simo & Taylor, 1985).
The iterative process is stopped when a norm of the residual

hn+1R
(i+1)
n+1 (ηhn+1) = 〈bn+1,η

hn+1〉+〈tn+1,η
hn+1〉∂Ωt−〈hn+1σn+1

(

∇su
hn+1,(i+1)
n+1

)

,∇sη
hn+1〉

and/or of the displacement increment

u
hn+1,(i+1)
n+1 − u

hn+1,(i)
n+1
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is sufficiently small.
The algorithm (4.18) for given starting value u

hn+1,(0)
n+1 generates a sequence of

iterates which under some conditions is shown to be convergent. More precisely, if
u

hn+1

n+1 is the exact solution of (4.16) and u
hn+1,(0)
n+1 is sufficiently close to u

hn+1

n+1 , the
following is valid (Ortega & Rheinboldt, 2000)

‖uhn+1,(i+1)
n+1 − u

hn+1

n+1 ‖ ≤ β‖uhn+1,(i)
n+1 − u

hn+1

n+1 ‖2.

Remark 4.16. In applying Newton’s method for the solution (4.16), the starting

point u
hn+1,(0)
n+1 has no physical meaning. It is only the solution of (4.16) to have

physical meaning. The starting point is only required to be close to the exact
solution and to belong to the domain of the function L(∇su

hn+1

n+1 ,η
hn+1).

The initialization strategy represents, therefore, an important issue for the
success of the method. If mesh does not change from one time step to the other,
the functional L(∇su

h
n+1,η

h) is defined over Vh × Vh
0 . Therefore, we can assume

u
h,(0)
n+1 = uh

n, solution at the previous time step. As a result, the initial residual is
given by

hR
(0)
n+1(η

h) = 〈bn+1,η
h〉 + 〈tn+1,η

h〉∂Ωt − 〈hσn+1

(

∇su
h,(0)
n+1

)

,∇sη
h〉,

and for the choice of the starting value, it is also

〈hσn+1

(

∇su
h,(0)
n+1

)

,∇sη
h〉 = 〈bn,η

h〉 + 〈tn,η
h〉∂Ωt .

Thus, in this case, if u
h,(0)
n+1 is not close to uh

n+1, that is, the method fails to con-
verge, then by reducing the external load level we reduce the initial residual, which
eventually approaches to zero, that is,

lim
tn+1→tn

hR
(0)
n+1(η

h) = 0.

Thus, one may expect that with the above choice of the starting value the algorithm
finally will converge.

If the mesh changes from one time step to the other, the functional L(∇su
hn+1

n+1 ,

ηhn+1) is defined over Vhn+1 ×Vhn+1

0 , therefore, uhn

n ∈ Vhn cannot be used as starting

value, for u
hn+1,(0)
n+1 must belong to Vhn+1 . In this case, the definition of the starting

value becomes an important issue, for the residual does not vanish by reducing the
external load level, that is,

lim
tn+1→tn

hn+1R
(0)
n+1(η

hn+1) 6= 0.

Thus, even though we adopt the incremental load procedure within the step as
initialization procedure, the algorithm may still fail to converge. This is to be
related, finally, to the value of the residual

hn+1R(0)
n (ηhn+1) = 〈bn,η

hn+1〉 + 〈tn,η
hn+1〉∂Ωt − 〈hn+1σn+1

(

∇su
hn+1,(0)
n+1

)

,∇sη
hn+1〉.
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As a result, other solution techniques must be envisaged to solve the system (4.16)
or to build a starting value which is good for the success of Newton’s method, such
as, for instance, the line search method whose general principles are recalled in the
next section.

4.6.1 Line search method

Lack of convergence of the Newton–Raphson’s method is usually shown either by
an increase or by an oscillation of the norm of the residual of the iterates. The line
search method avoids these behaviours by imposing a decrease in the residual at
each iteration.

The principle of the method is quite simple (Dennis & Schnabel, 1996): If the

residual at the proposed new iterate u
hn+1,(i+1)
n+1 = u

hn+1,(i)
n+1 +∆uhn+1,(i) is bigger than

the residual at the previous iterate u
hn+1,(i)
n+1 , one tries to find along a given direction

d an acceptable point u
hn+1,(i+1)
n+1 = u

hn+1,(i)
n+1 + ηd whose residual is lower.

As direction d, one usually takes the solution ∆uhn+1,(i) obtained from the
Newton–Raphson of the current step which has resulted unsatisfactory, whereas
for the choice of the scalar η, we refer to the criterion given in Bonet & Wood
(1997) which approximates the norm of the residual dependent on η with a quadratic
function. The resulting algorithm is described in Box 4.5 where the method,

Box 4.5. Newton–Raphson with line search method

1. Given u
hn+1,(0)
n+1 , and the residual functional hn+1R

(0)
n+1(η) with η ∈ Vhn+1

0

2. Compute u
hn+1,(1)
n+1 with Newton–Raphson

3. Set d = (u
hn+1,(1)
n+1 − u

hn+1,(0)
n+1 ) ∈ Vhn+1

0 and consider hn+1R
(1)
n+1(η)

4. IF hn+1R
(1)
n+1(d) ≤ ρhn+1R

(0)
n+1(d) use Newton–Raphson

ELSE α =
hn+1R

(0)
n+1(d)

hn+1R
(1)
n+1(d)

IF α > 0, η =
α

2

ELSE η =
α

2
+

√
(α

2

)2

− α

END IF
END IF

5. Compute u
hn+1,(1)
n+1 = u

hn+1,(0)
n+1 + ηd and GOTO 3

where, typically, a value of ρ = 0.5 is used (Bonet & Wood, 1997).

which is a globally convergent strategy, has been combined with a Newton–Raphson
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method, which is a fast local convergent strategy, obtaining a strategy which inherit
the benefits of both.

4.7 Concluding Remarks

In this Chapter we have described the displacement finite element solution of an
elastoplastic model with internal variables discretized in time with the backward
Euler method. A critical analysis of the nature of the discretization errors introduced
in the formulation of the fully discrete scheme has been provided. In particular, the
fundamental observation has been made that change of data and/or finite element
mesh from one time interval to the other can be both related to a discontinuity
jump of the approximate solution across the time instant tn. Also, a critical review
of the current techniques to transfer of the data from one mesh to the other has
been given.

However, before proceeding to the study of the transfer procedures in terms of
the error produced, in the next Chapter we will first consider how to use the extended
dissipation error to assess the quality of finite element solutions with meshes constant
throughout the loading process. The objective is to show that this error measure is
able to account for effects of time and space discretization error, and also to provide
the relative importance of the error components associated with the residual in the
state law and in the evolution law.
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Chapter 5

The error in the constitutive
equations to assess the quality of
the finite element solution with
mesh constant in time

5.1 Introduction

Objective of this chapter is the application of the general theory of the error in the
constitutive equations developed in Chapter 3 to the assessment of the quality of
finite element solutions of elastoplasticity problems.

The general properties of an admissible solution of the problem under consid-
eration have been given and discussed in Section 3.5. For instance, with respect to
the computation of the extended dissipation error, an admissible solution is the set
of the time dependent fields of the state variables which satisfy the compatibility and
equilibrium equations along with the initial conditions. As a result, a finite element
solution obtained for instance by a displacement formulation, is not in general an
admissible solution. The values are discrete in time and the finite element stresses
do not satisfy the equilibrium equations in a pointwise manner.

In order to apply the theory of the error in the constitutive equations, given
the finite element solution, a corresponding admissible solution must be therefore
defined. However, if the admissible solution must reflect the approximations asso-
ciated with the finite element solution, it is understood that some conditions are
necessary for its definition (Ladevèze & Pelle, 2001). A rather general one can be
expressed in the following terms

Given a family of finite element solutions which converges to
the exact solution as the discretization parameters approach
their corresponding limit values, then also the family of corre-
sponding admissible solutions converges to the exact solution
and possibly with the same rate of convergence.
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In linear elasticity, this condition refers to the definition of the so called prolon-
gation conditions, that is, to the conditions posed on the definition of the statically
admissible stress fields in terms of the computed finite element stresses, so that the
error in the constitutive equation can be bounded above by the exact error in solu-
tion. A thorough analysis of the meaning of this condition can be found in Ladevèze
& Leguillon (1983) and Ladevèze & Pelle (2001) for the constant triangular element
and is referred to as strong prolongation condition.

In this chapter, the finite element mesh is assumed to be constant throughout
the time evolution of the continuum. As a result, the admissible solution correspond-
ing to the finite element solution will be time continuous. Criteria to build a such
admissible solution for the computation of the extended dissipation error are first
given in general and then detailed for the Prandtl-Reuss model. Numerical analysis
of its performance compared to classical measures of the error are illustrated on a
1D model problem. In the second part of the chapter, we recall also the dissipation
error and compare its performance to the extended dissipation error.

5.2 Extended Dissipation Error

In the definition of an admissible solution for the computation of the extended
dissipation error, the statically admissible variables are not constrained to their
conjugate variables by means of the state laws as it happens in the dissipation error.
This allows more information from the finite element solution to be included in
building the corresponding admissible solution and strengthen the link between the
two solutions. For example, in the case of a J2-plasticity model and of finite element
solution which delivers plastic strains meeting the incompressibility condition, the
computed plastic strain field can be assumed, in some circumstances, as part of
the admissible solution. In particular, in a displacement finite element formulation
the plastic strain, known only at the Gauss points xh

e,i of the element used for
the numerical integration of the constitutive equations, can be extended over the
element in a field which continues to meet the incompressibility condition. This can
be realized, for example, by assuming each element partitioned by the Voronoi cells
associated with each Gauss point and assuming a constant distribution of the plastic
strain over the cell equal to the value of the strain at the respective Gauss point.
In this way we define a plastic strain field whose incompressibility is guaranteed at
almost every point of the domain. For elements with only one Gauss point, the
field will be clearly constant over the element. Figure 5.1 depicts, for instance,
the definition of the Voronoi cells for the triangular element when one or three
Gauss points are used for the numerical integration of the constitutive equations,
respectively, along with the assumed distribution of internal variables. Clearly, one
can envisage also other partitions of the element along with relative definition of the
state variables distribution. It will follow that the error in the constitutive equations
will have to be considered as the error associated with the given assumption for the
state variables distribution.
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Figure 5.1: Partition of a triangular element with Voronoi cells relative to its Gauss points along
with respective assumed distribution for the internal variables

Likewise, conforming finite element displacements can be used as part of the
admissible solution and do not need to be modified, unlike for the definition of the
admissible solution to compute the dissipation error, as it will be discussed in the
following (Moës, 1996).

A key feature of the analysis and implementation of the error in the consti-
tutive equations, however, is in general the definition of an equilibrated stress field
σad(x, tn+1) linked to the finite element solution hσn+1(x

h
e,i). A substantial body

of research has been devoted to recover more or less equilibrated stress field on the
basis of the computed finite element stresses such as in Stein & Ahmand (1977),
Zienkiewicz & Zhu (1992c), Ainsworth & Oden (1993), Wiberg et al. (1994) and
de Miranda & Umbertini (2002), among others. In these works different condi-
tions are given to relate the recovered stress field to the finite element stresses. In
the following we refer to the techniques initiated by Ladevèze (1975) where the so
called prolongation condition depending in general on the regularity of the mesh
establishes the aforementioned link (see, e.g., Ladèveze, 1994; Ladevèze & Pelle,
2001). In particular, hereafter, we apply the strong prolongation condition as intro-
duced and analysed in Ladevèze (1975), Ladevèze & Leguillon (1983) and Ladevèze
& Pelle (2001). This condition distinguishes the statically admissible stress fields
σad(x, tn+1) which satisfy the following equation for every shape function Ni(x) and
for all the elements Ωe,

∫

Ωe

(

σad(x, tn+1) − hσn+1(x)
)

: ∇Ni(x) dΩ = 0. (5.1)

For anisotropic meshes, the condition (5.1) is required to hold for any element Ωe

and for any shape function of higher order which is associated with a non vertex
node. This condition has been termed as weak prolongation condition in Ladèveze
(1994) and Ladevèze & Rougeot (1997).

The only unknowns left apart and necessary to determine a complete admis-
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sible solution are, therefore,

pad(x, tn+1), αad(x, tn+1);

Rad(x, tn+1), Xad(x, tn+1).

For their computation, the general method of minimization of the error introduced
in Ladevèze et al. (1999) can be adopted. However, in general, it may be much more
convenient to resort to the simpler criterion given in Ladevèze & Moës (1997) which
resembles the integration of the evolution law for the constitutive model which is
used. Next, we detail this construction for the Prandtl-Reuss model.

5.2.1 Construction of the admissible solution

The Prandtl Reuss plasticity model with Linear Hardening
The essential equations for this model are hereafter recalled, cf. Section 3.2.4.5,

Yield Condition: ‖σD
ad‖ − (Rad +R0) ≤ 0, Rad ≥ 0

slη2
x,t(σad, Rad; εe

ad, pad) =
(

σad − Cεe
ad

)

: C
−1
(

σad − Cεe
ad

)

+

+
(

Rad − Hpad

)

H
−1
(

Rad − Hpad

)

;

dη2
x,t(σad, Rad; ε̇

p
ad, ṗad) = R0‖ε̇p

ad‖ − σad : ε̇
p
ad +Radṗad,

with Tr[ε̇p
ad] = 0 and ṗad ≥ ‖ε̇p

ad‖, where ‖q‖ =
√

q : q is the norm of the second
order tensor q.

In the following, we refer to the solution of a fully implicit conforming finite
element displacement formulation of the initial boundary value problem of the plas-
ticity model under consideration. The primary variable is given at the discrete time
instants tn+1 in terms of the finite element displacement field uh

n+1(x), whereas the
secondary variables, such as hσn+1,

hε
p
n+1,

hpn+1, are issued only at the Gauss points
xh

e,i used for the numerical quadrature of the internal virtual work. As a result of the
considerations of Section 4.2, we recall that on conceptual level, all the secondary
variables can be obtained at any point x ∈ Ω provided that at this point and for all
the previous discrete time instants tn, the incremental constitutive value problem
has been solved. This would require to store the computed finite element displace-
ment field at each discrete time instant tn and consequently huge memory capacities
would be necessary. By contrast, in an incremental solution procedure, only the
accepted solution at the previous discrete time instant is stored at most. The stress
field which would be so obtained would not satisfy anyway the equilibrium equations
in a pointwise manner, thus the finite element solution cannot be used to compute
the extended dissipation error.

Objective of this section is to propose a procedure to build an admissible
solution corresponding as close as possible to the computed finite element solution
and make use of minimum memory requirements. This is feasible because equation
(3.47) shows that the extended dissipation error at the time tn+1 can be expressed
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in terms of only the error at the time tn and the admissible solution over [tn, tn+1].
As a result, the admissible solution can be defined in an incremental manner, as
well. Consistently with an assumed linear variation of the external load over each
time interval, and the convexity of the equilibrium and compatibility conditions,
the admissible solution is taken to vary linearly over [tn, tn+1]. Therefore, for its
complete definition we need to solve the following problem

Given: the admissible solution at tn,
the finite element solution at tn+1,

Find: a corresponding admissible solution at tn+1.

As far as the definition of the admissible displacement field and the equilibrated
stress field are concerned, the general considerations given in the previous section
apply. In particular, the equilibrated stress field is obtained with a two-stage pro-
cedure. The first consists, by means of the prolongation condition, in defining an
equilibrated traction forces along the boundary of each element and the second in
solving the equilibrium equations over each element, usually, with higher order el-
ements. For technical details we refer to Rougeot (1989), Ladevèze et al. (1991),
Ladevèze & Rougeot (1997) and Ladevèze & Pelle (2001). The outcome is the defi-
nition of a statically admissible stress field σad(x, tn+1), which is known at any point
x ∈ Ω and is continuous over Ω.

Also, we consider hereafter the computed finite element plastic strain to be
extended over the domain with the criterion given in the previous section so that it
makes sense to write hε

p
n+1(x) for each x ∈ Ω. For the definition of other admissi-

ble state variables ε
p
ad(x, tn+1), pad(x, tn+1), Rad(x, tn+1) we start from the general

procedure indicated by Ladevèze et al. (1999), which considers the minimization
of the extended dissipation error over the set of the admissible values for the re-
maining state variables. The minimization can be carried out at each point of the
domain since there are no spatial derivative involved in the constitutive equations,
in particular it will be done at the Gauss points used to compute numerically the
space integrals that define the error (cf. Ladevèze & Pelle, 2001). These quadra-
ture points do not have to be confused with those where the constitutive equations
are integrated numerically. These points, in turn, are the one used to compute
numerically the integral that appear in the internal virtual power.

The minimization problem in its general terms is described in Box 5.1. We
propose an approximate solution of this problem built as follows. The admissible
thermodynamic force Rad(x, tn+1) is defined as

Rad(x, tn+1) = Max
{
R1, R2

}

where

R1 = ‖σD
ad(x, tn+1)‖ −R0

R2 = Rad(x, tn).
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Box 5.1. Definition of the state variables as minimization of the extended dissipation error

For each x ∈ Ω

Given: σad(x, tn), Rad(x, tn);

εad(x, tn), εp
ad(x, tn), pad(x, tn).

σad(x, tn+1), εad(x, tn+1)

Find: Rad(x, tn+1);

ε
p
ad(x, tn+1), pad(x, tn+1)

such that by assuming a time linear variation over [tn, tn+1] of the vari-
ables

σad(x, t), Rad(x, t);

εad(x, t), ε
p
ad(x, t), pad(x, t),

we realize the minimum of the following function

F (σad, Rad; εad, ε
p
ad, pad) =

= sup
tn≤t≤tn+1

{
[

σad(x, t) − Cεe
ad(x, t)

]

: C
−1
[

σad(x, t) − Cεe
ad(x, t)

]

+

+
[

Rad(x, t) − Hpad(x, t)
]

H
−1
[

Rad(x, t) − Hpad(x, t)
]

+

+

∫ t

tn

[

R0‖ε̇p
ad(x, τ)‖ − σad(x, τ) : ε̇

p
ad(x, τ) +Rad(x, τ)ṗad(x, τ)

]

dτ

}

under the following constraints

∀ t ∈ [tn, tn+1]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

‖σD
ad(x, t)‖ − (Rad(x, t) +R0) ≤ 0,

ṗad(x, t) ≥ ‖ε̇p
ad(x, t)‖,

Tr[ε̇p
ad(x, t)] = 0

εad(x, t) = εe
ad(x, t) + ε

p
ad(x, t)

Rad(x, t) non–negative and non–decreasing
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The admissible plastic strain, on the other hand, will be given by

ε
p
ad(x, tn+1) = hε

p
n+1(x)

if the following condition is satisfied,

σad(x, tn+1) :
[
hε

p
n+1(x) − ε

p
ad(x, tn)

]
≥ 0. (5.2)

Otherwise we choose
ε

p
ad(x, tn+1) = ε

p
ad(x, tn).

This definition of ε
p
ad(x, tn+1) will guarantee the nonnegativity of the implicit ex-

pression of the plastic work.
Finally, with regard to the admissible accumulated plastic strain pad(x, tn+1)

it is
pad(x, tn+1) = pad(x, tn) + ‖εp

ad(x, tn+1) − ε
p
ad(x, tn)‖

which corresponds to the integration of the equation ṗ = ‖ε̇p
ad‖ that occurs for

the model under consideration by assuming linear variation of the variables over
[tn, tn+1].

Once all the admissible state variables have been computed at tn+1, the use of
a time linear interpolation over [tn, tn+1] guarantees the admissibility of the solution
for the convexity of the equilibrium and compatibility conditions. Also, the above
procedure delivers an admissible solution which produces a finite value of the error
for the convexity of the domains E and C introduced in Section 3.2.4.5.

Remark 5.1. The use of a time linear interpolation of the computed nodal values
has the implied assumption that the accuracy of this time dependent function is the
same as the computed nodal values. This is not the case in general but it holds for
small values of the time step ∆t.

Figure 5.2 reports schematically the notation relative to the finite element
solutions and corresponding admissible solutions in the case of finite element mesh
constant in time.

5.2.2 Error Expressions

In the section Error Analysis which follows, comparisons of the extended dissipation
error with classical measures of the exact error in solution will be reported. The aim
is to illustrate that the extended dissipation error reflects quite well the evolution of
the admissible solution with respect to the exact one as described by more classical
measures of the error. This section therefore presents the expressions of the classical
measures of the error used for the subsequent numerical comparison and recalls, for
the reader’s convenience, the expressions of the extended dissipation error and the
error in solution.

Classical measures of the exact error in solution

As shown in the previous section, the extended dissipation error applied to the finite
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Figure 5.2: Finite element solution and admissible solution for finite element mesh Th constant in
time.

element solution measures actually the accuracy of an admissible solution corre-
sponding to the finite element solution. The admissible solution is a time dependent
function which is obtained as time linear interpolation of the discrete values at the
time instants used for the time discretization of the initial boundary value problem
under consideration. Thus, it is this time dependent solution that will be assumed
in the definition of the exact error. Furthermore, as generalization of the error in
elasticity, it has been observed in Section 3.5.3 that the extended dissipation error
can be interpreted as a global measure of the error of the kinematically admissible
solution skin

ad = (εad, ε
p
ad, pad). Thus, it appears quite natural to consider the L∞L2

norm of the exact error of the admissible total strain,

‖eεad
‖L∞([0,T ];(L2(Ω))d×d) = SUP

t≤T
‖eεad

(x, t)‖(L2(Ω))d×d =

= MAX
1≤n≤N

SUP
t∈[tn, tn+1]

{∫

Ω

(
εex(x, t) − εad(x, t)

)
:
(
εex(x, t) − εad(x, t)

)
dx

} 1
2

,

along with the L∞ control in time of the free complementary energy norm of the
exact error of the generalised stress field conjugate of the kinematically admissible
solution. That is, if we let

‖eσ̃(x, t)‖2
V =

∫

Ω

(
σex(x, t) − Cεe

ad(x, t)
)
: C

−1
(
σex(x, t) − Cεe

ad(x, t)
)
dx

‖eR̃(x, t)‖2
M =

∫

Ω

[

Rex(x, t) − Hpad(x, t)
]

H
−1
[

Rex(x, t) − Hpad(x, t)
]

dx

then, it follows

‖eGSF‖L∞([0,T ];V×M) = SUP
t≤T

{
‖eσ̃(x, t)‖2

V + ‖eR̃(x, t)‖2
M

} 1
2 .
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This choice is motivated by the following result

Theorem 5.1.

Given a kinematically admissible solution skin
ad = (εad, ε

p
ad, pad),

∣
∣
∣
∣
∣

‖eε‖L∞([0,T ];(L2(Ω))d×d) = 0

‖eGSF‖L∞([0,T ];V×M) = 0
⇒

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

εad(x, t) = εex(x, t)

εe
ad(x, t) = εe

ex(x, t)
∀x ∈ Ω ∀t ≤ T

ε
p
ad(x, t) = εp

ex(x, t)

pad(x, t) = pex(x, t)

The proof follows by the same arguments as in the proof of Theorem 3.9, and
will not be repeated here.

Error in the constitutive equations

This error measure is given by equation (3.46) which is here rewritten in a form that
fits better the incremental origin of the admissible solution sad = (σad, Rad ; εad, ε

p
ad, pad).

e2ext(T ) =

= MAX
1≤n≤N

SUP
t∈[tn, tn+1]

{
θe
sl

2(t)
︷ ︸︸ ︷∫

Ω

(
σad(x, t) − Cεe

ad(x, t)
)
: C

−1
(
σad(x, t) − Cεe

ad(x, t)
)
dx +

+

θ
p
sl

2(t)
︷ ︸︸ ︷∫

Ω

[
Rad(x, t) − Hpad(x, t)

]
H

−1
[
Rad(x, t) − Hpad(x, t)

]
dx +

+

θ2
d(t)

︷ ︸︸ ︷

θ2
d(tn) + 2

∫

Ω

∫ t

tn

[

R0‖ε̇p
ad(x, τ)‖ − σad(x, τ) : ε̇

p
ad(x, τ) +Rad(x, τ)ṗad(x, τ)

]

dτ dx

}

,

(5.3)
where

θ2
d(tn) = 2

∫ tn

0

∫

Ω

[

R0‖ε̇p
ad(x, t)‖ − σad(x, t) : ε̇

p
ad(x, t) +Rad(x, t)ṗad(x, t)

]

dx dt.

Equation (5.3) basically expresses the global error at the time T in terms of
the error at time tn and of the admissible solution over [tn, T ].

Since the admissible solution sad(x, t) is continuous piecewise linear over each
time step, the time integral in the error expression can be computed easily. Hence,
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we have for t ∈ [tn, tn+1],
∫

Ω

∫ t

tn

{

R0‖ε̇p
ad(x, τ)‖ − σad(x, τ) : ε̇

p
ad(x, τ) +Rad(x, τ)ṗad(x, τ)

}

dτ dx =

=
t− tn

tn+1 − tn

∫

Ω

{

R0‖∆ε
p
ad(x)‖ − σad(x, t) + σad(x, tn)

2
: ∆ε

p
ad(x) +

+
Rad(x, t) +Rad(x, tn)

2
∆pad(x)

}

dx

where

∆ε
p
ad(x) = ε

p
ad(x, tn+1) − ε

p
ad(x, tn)

∆pad(x) = pad(x, tn+1) − pad(x, tn),

whereas σad(x, t) and Rad(x, t) are the time linear interpolation over [tn, tn+1] of
the respective values at tn and tn+1. Also, it follows

θ2
d(tn) =

n−1∑

i=1

2

∫

Ω

{

R0‖∆ε
p
ad,i(x)‖ − σad(x, ti+1) + σad(x, ti)

2
: ∆ε

p
ad,i(x) +

+
Rad(x, ti+1) +Rad(x, ti)

2
∆pad,i(x)

}

dx

with

∆ε
p
ad,i(x) = ε

p
ad(x, ti+1) − ε

p
ad(x, ti)

∆pad,i(x) = pad(x, ti+1) − pad(x, ti).

The value of the dissipation error at t1 = 0, θ2
d(t1), is assumed equal to zero.

Error in solution

This error measure is given by equation (3.73) which is the extended dissipation
error associated with the admissible solution sex,ad = (σex, Rex ; εad, ε

p
ad, pad).

e2ex(T ) =

= MAX
1≤n≤N

SUP
t∈[tn, tn+1]

{
∫

Ω

(
σex(x, t) − Cεe

ad(x, t)
)
: C

−1
(
σex(x, t) − Cεe

ad(x, t)
)
dx +

+

∫

Ω

[
Rex(x, t) − Hpad(x, t)

]
H

−1
[
Rex(x, t) − Hpad(x, t)

]
dx + θ2

d,ex(tn) + (5.4)

+2

∫

Ω

∫ t

tn

[

R0‖ε̇p
ad(x, τ)‖ − σex(x, τ) : ε̇

p
ad(x, τ) +Rex(x, τ)ṗad(x, τ)

]

dτ dx

}

,
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where, as before, it is

θ2
d,ex(tn) = 2

∫ tn

0

∫

Ω

[

R0‖ε̇p
ad(x, t)‖ − σex(x, t) : ε̇

p
ad(x, t) +Rex(x, t)ṗad(x, t)

]

dx dt.

Unlike the analogous expression (5.3), σex(x, t) and Rex(x, t), as functions of
time, are not in general linear over each time step, therefore the time integral must
be computed by accounting for the actual time variation of the functions.

For the ease of implementation, it may be useful rewriting the error in the
evolution law as follows:

∫ t

tn

[

R0‖ε̇p
ad(x, τ)‖ − σex(x, τ) : ε̇

p
ad(x, τ) +Rex(x, τ)ṗad(x, τ)

]

dτ =

=
t− tn

tn+1 − tn
R0‖∆ε

p
ad‖ −

1

tn+1 − tn

(∫ t

tn

σex(x, τ) dτ

)

: ∆ε
p
ad +

+
1

tn+1 − tn

(∫ t

tn

Rex(x, τ) dτ

)

∆pad.

5.2.3 Numerical example

The general theory developed in the previous Sections of this Chapter is here applied
to assess the quality of the finite element solution of a one dimensional elastoplastic
bar under distributed axial loads. Despite the simplicity of the model, it allows one
to emphasize the physical concepts of the theory and illustrate all the ingredients
which characterize an error estimator of a finite element solution of elastoplastic
problems (Orlando & Peric, 2000).

The model problem is shown in Figure 5.3 along with the variation of the exter-
nal load multiplier. The bar is assumed to be composed of an elastoplastic material
which obeys the Prandtl-Reuss plasticity law with linear hardening. The hardening
law and elastic domain in the space of the generalized stresses are also depicted in
Figure 5.3. For the problem at hand a closed form solution was not available, hence
an ”overkill” procedure has been adopted, that is, the backward Euler finite element
solution of a uniform mesh of 2000 elements with linear interpolation and time step
dt = 0.025 has been used as an ”exact” solution.

The evolution of the state variables is reported in Figure 5.4 and Figure 5.5.
Here, a steep gradient of the total strain is observed over the subdomain Ω′ =
[0.725, 0.7275] starting at t = 16.375 which spreads over [0.628, 0.73] as the load is
increased (in absolute value). This is due to the fact that plastic strains of opposite
sign are therein produced further to the sign reversing of the load. For the associative
model under consideration, the plastic strain rate is, indeed, given by ε̇p = λsign(σ)
where the plastic multiplier is nonnegative, i.e. λ ≥ 0, thus if plastic loading occurs,
the sign of ε̇p is the same as σ.
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Geometric Model Loading History

L=1.0

q(x,t)=�(t)x

Material Properties


A=1.0


E=2.0

�

y=0.5


H=0.4

x

Elastic Domain Hardening Law

Figure 5.3: 1D Model Problem

tn tn+1 Load Mult. Domain Ω′

µn+1

1.500 1.525 1.525 [0.995, 1.0]
2.525 2.550 2.550 [0., 0.031]∪ [0.8865, 1.0]
5.975 6.000 6.000 [0., 0.439]∪ [0.726, 1.0]

16.375 16.400 −4.400 [0.725, 0.7275]
17.500 17.525 −5.525 [0.7075, 0.9115]
17.525 17.550 −5.550 [0.709, 0.9215]
17.675 17.700 −5.700 [0.756, 1.0]
17.700 17.725 −5.725 [0.76, 1.0]
18.175 18.200 −6.200 [0.76, 1.0]
18.200 18.225 −6.225 [0, 0.0705]∪ [0.7595, 1.0]

29.975 30.000 −18.000 [0, 0.5315]∪ [0.628, 1.0]

Table 5.1: Parts of the domain which experience plastic loading for the given loading history.
”Exact” solution is obtained as finite element solution with 2000 elements and dt = 0.025
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Figure 5.4: Exact Stress and Total Strain Distribution at each dt = 0.75 for t ∈ [0.0, 30.0]
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Figure 5.5: Exact Plastic Strain and Accumulated Plastic Strain Distribution at each dt = 0.75
for t ∈ [0.0, 30.0]



The Table 5.1 reports the parts Ω′ of the domain Ω which experience plastic
loading for the given loading history.

Before proceeding to the error analysis of several fully discrete schemes of the
problem given in Figure 5.3, some considerations are due on the particularity of
time and finite element discretization of 1D associative plasticity problems which
will help to gain critical insight into the error behaviour.

As a result of finite element interpolation for the displacement field, the initial
boundary value problem which governs the evolution of the elastoplastic continuum
is transformed into a system of ordinary differential equations given in implicit form
and algebraic constraints on the variables, which are usually called differential–
algebraic equations (Brenan et al., 1996). The differential problem is stated over
the time interval of interest and its unknowns are given by the nodal displacements.

The exact solution of this system of equations would allow one to build a dis-
placement field which is affected by only space discretization error. Unfortunately,
the resulting system is complex, for the main difficulty comes from the exact inte-
gration of the initial value constitutive problem which has been obtained only for
very special conditions, such as in Krieg & Krieg (1977) and Ristinmaa & Tryding
(1993). Consequently, as we have discussed in Section 4.3, one must generally resort
to numerical integration algorithms, such as, the implicit backward Euler difference
scheme. For an autonomous ordinary differential equation, for example,

∣
∣
∣
∣

ẏ = F (y)
y(t0) = y0

the backward Euler would be displayed as in Figure 5.6(a) where the slope
yn+1 − yn

∆t

(a) (b)

Figure 5.6: Backward Euler method graphically displayed: (a) For a general ordinary differential
equation (b) For the initial value constitutive problem of 1D associative plasticity. The solution is
exact at the time instants of the discretization

is given by the value of the function F (y) at yn+1. Also, note that the approximate
solution does not lie in general on the exact curve.
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In 1D associative plasticity, update stresses equations obtained from backward
Euler integration scheme applied to the evolution equations are solved by a predictor-
corrector algorithm which reads as in Box 5.2 (see, e.g., de Souza Neto et al., 2002),
and has the geometrical interpretation given in Figure 5.7.

By inspection of the same Figure, it follows at once that the use of backward
Euler will deliver the exact solution at the load levels that are considered. Under the
assumption that the projection direction on the yield surface does not depend on the
imposed total strain, which occurs surely in 1D plasticity and isotropic hardening,
the application of the total strain increment ∆ε or, for instance, of two increments
∆ε(i) such that ∆ε = ∆ε(1) + ∆ε(2) delivers the same final state. This can also

Figure 5.7: Return mapping in 1D associative plasticity for ∆ε and ∆ε = ∆ε(1) + ∆ε(2)

be read on the isoerror maps given in Krieg & Krieg (1977) and Schreyer et al.
(1979). Finally, this means that time discretization effects for different values of
the time step depend upon the difference in the time linear interpolations of the
corresponding discrete values, Figure 5.6(b).

Figure 5.8: Exact and finite element solutions for an elastic bar with constant properties. The
finite element solutions are exact at the nodes of the mesh.

The one dimensionality of the problem has also particularities in terms of space
discretization. For elastic behaviour, the orthogonality of the residual with respect
to the finite element space and the local properties of the shape functions allows
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one to show quite easily that the finite element solution is exact at the nodes if,
for example, the material properties of the bar are uniform and the elements are
linear. This result holds, however, also for more general conditions, for which we
refer to Babuska & Strouboulis (2001). The approximation, therefore, arises in the
difference between the displacement finite element interpolation within each element
and the exact displacement field, Figure 5.8.

For an elastoplastic material, this is no more true. Nevertheless one can expect
that the finite element solution at the nodes is close to the exact one.

Box 5.2. Fully implicit Elastic predictor/Return mapping algorithm for numerical

integration of 1D associative plasticity constitutive equations. Isotropic hardening

Data: εpn, pn

Given: εn+1

Evaluate: Elastic Trial State
∣
∣
∣
∣
∣

ε
p,tr
n+1 = εpn, ε

e,tr
n+1 = εn+1 − ε

p,tr
n+1, p

tr
n+1 = pn

σtr
n+1 = Cε

e,tr
n+1, R

tr
n+1 = g(ptr

n+1)

Check: IF f tr
n+1

def
= f(σtr

n+1, R
tr
n+1) ≤ 0 THEN

set (•)n+1 = (•)tr
n+1

ELSE ⇒ Return mapping

END IF
Return mapping: Solve the system

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

εen+1 − ε
e,tr
n+1 + λn+1

∂f

∂σ
(σn+1, Rn+1) = 0

pn+1 − ptr
n+1 − λn+1

∂f

∂R
(σn+1, Rn+1) = 0

λn+1 > 0, fn+1 = 0

for λn+1, ε
e
n+1, pn+1, with

σn+1 = Cεen+1, Rn+1 = g(pn+1)

In the light of the aforementioned observations, we will consider fully discrete
schemes where time steps and meshes are tailored ad hoc so that effects of space and
time discretization can be relevant. This has been realized by requiring that there
are different finite elements to yield in the model once the load level varies from 3.0
to 6.0 with step equal to 1.5. In this way, the response of the finite element model
departs from the time linear interpolation of the solutions at t = 3.0 and t = 6.0.
Therefore, an underlying non uniform mesh me0 has been first constructed with
this criterion whereas the other meshes have been obtained by halving each element
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Figure 5.9: Fully discrete schemes analysed

of the corresponding parent mesh. Also, uniform partition of the time interval of
interest with time steps k = ∆t = 6.0, 3.0, 1.5, 0.75 have been assumed. The
fully discrete schemes are shown in Figure 5.9. These have been analysed using an
incremental solution based on the backward Euler stepping scheme and the Newton-
Raphson procedure. Only one Gauss point has been used for the integration of the
constitutive equations, because linear finite elements are used. Plastic strain hε

p
n+1

and accumulated plastic strain hpn+1, obtained at the single quadrature point of
each element, are prolongated into uniform field over the respective element.

For the definition of the corresponding admissible solution necessary to com-
pute the extended dissipation error the criteria described in the previous Section
apply. In particular, if the 1D system is statically indeterminated, the statically
admissible stress field σad(x, tn+1) is obtained by solving over each element Ωh

e ∈ Th

the following equilibrium problem,

∀Ωh
e = ]xh

e , x
h
e+1[∈ Th

∣
∣
∣
∣
∣
∣
∣
∣

− d

dx
σe

ad(x, tn+1) + f(x, tn+1) = 0

σe
ad(x

h
e , tn+1) = −

∫ xh
e+1

xh
e

hσ(x)
dNh

e

dx
(x) dx+

∫ xh
e+1

xh
e

f(x, tn+1)N
h
e (x) dx

(5.5)

where the boundary condition is obtained from the prolongation condition (cf.
Ladevèze & Leguillon, 1983)

∫ xh
e+1

xh
e

(

σe
ad(x, tn+1) − hσ(x)

)

v(x)dx ∀ v ∈ Vh(Ωh
e ) (5.6)

with Vh(Ωh
e ) being the finite dimensional space generated by the element Lagrangian

shape functions N
h
e (x) and N

h
e+1(x) depicted in Figure 5.10.
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Figure 5.10: Element Lagrangian shape functions of a linear finite element

Remark 5.2. It is an easy matter to check that condition (5.6), albeit local, is
consistent with the continuity of σe

ad(x, tn+1) across the nodes, i.e.,

σe−1
ad (xe, tn+1) = σe

ad(xe, tn+1),

and also, that the following equilibration condition

σe
ad(xe, tn+1) − σe

ad(xe+1, tn+1) +

∫ xh
e+1

xh
e

f(x, tn+1)dx = 0

is satisfied. Furthermore, it is possible to show that condition (5.6) corresponds to
a splitting assumption for the singular component of the residual in the equilibrium
equation associated with the finite element stress, hσ, and given by hσe(x+

e , tn+1) −
hσe−1(x−e , tn+1), if a distribution assumption, over the element, of the finite element
stresses computed at the quadrature points has also been respected.

The admissible thermodynamic force Rad(x, tn+1) is assumed as

Rad(x, tn+1) = Max
{
R1, R2

}

where
R1 = ‖σD

ad(x, tn+1)‖ − R0 and R2 = Rad(x, tn).

The admissible total strain, on the other hand, will be given by

εad(x, tn+1) = εh(x, tn+1),

whereas the admissible plastic strain is obtained as

ε
p
ad(x, tn+1) = hε

p
n+1(x),

if the following condition is satisfied

σad(x, tn+1) :
[
hε

p
n+1(x) − ε

p
ad(x, tn)

]
≥ 0, (5.7)

otherwise we choose
ε
p
ad(x, tn+1) = ε

p
ad(x, tn).
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Finally, with regard to the admissible accumulated plastic strain pad(x, tn+1)
it is

pad(x, tn+1) = pad(x, tn) + ‖εpad(x, tn+1) − ε
p
ad(x, tn)‖

which corresponds to the integration of the equation ṗ = ‖ε̇pad‖ that occurs for
the model under consideration by assuming linear variation of the variables over
[tn, tn+1].

For the computation of the error expressions given in Section 5.2.2, the supre-
mum over the generic time interval [tn, tn+1] is computed as maximum of a discrete
set given by the value of the functions sampled at the time ti ∈ [tn, tn+1] where the
”exact” solution is known, whereas the space integrals have been computed with
Gauss quadrature by using 12 quadrature points. This does not incur a supplemen-
tary computational effort, for only sampling of functions is involved.
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Figure 5.11: Evolution in time of the effectivity index for different fully discrete schemes

The extended dissipation error computed at each time ti, as given by equation
(5.3), and the error in solution, as given by equation (5.4), have been used to define
the effectivity index

ξ(t) =
eext(t)

eex(t)
, (5.8)

likewise for elliptic problems (Babuska & Rheinboldt, 1978b). The time evolution
of ξ(t) is shown in Figure 5.11 for the fully discrete schemes analysed. For all the
computations, the effectivity index was ranging between 1.00 to 1.45. As a result,
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the extended dissipation error eext(t) can be used as a reliable estimate of the error
in solution eex(t). Furthermore, it is noted that ξ(t) does not approach to 1 as the
discretization becomes finer. The condition ξ → 1 defines the asymptotic exactness
of the error estimator. This is a desirable property, though not strictly necessary for
the reliability and efficiency of the estimator which results from the boundness of
the effectivity index from above and from below (≥ 1), respectively. However, the
asymptotic properties of the extended dissipation error will be analysed numerically
in the next section. There, it will be shown that eext(t) → 0 as h, ∆t → 0 and, con-
sequently, the approximate solution will converge to the exact solution. Therefore,
at this stage, the default of the extended dissipation error of being an asymptotically
exact estimator of the error in solution is not of concern and deserves certainly major
investigation in the future. Also, one must be aware that, for instance, for elliptic
problems, the asymptotic exactness of an error estimator is a very fragile property
(Verfurth, 1996) that depends on or requires, amongst other things, very regular
meshes and a fairly smooth solution. In fact, proofs of asymptotic exactness of
some estimators given in literature are all based on the validity of superconvergence
results (Babuska & Rheinboldt, 1979a, 1981; Duran & Rodriguez, 1992; Babuska &
Rodriguez, 1993; Verfurth, 1996). Therefore, the importance of this property does
not have to be over-emphasized (Ainsworth & Oden, 1997) and certainly it is not
expected to hold for the general types of meshes used in the practical engineering
computations (Babuska et al., 1994a) and a fortiori for non linear problems.

A typical time evolution of the extended dissipation error eext(t) = sup
τ≤t

θ(τ) for

a fully discrete finite element model is given in Figure 5.12. In this picture, also the

current value of the components, θ(t) =
√

θ2
sl(t) + θ2

d with θsl(t) =

√

θe
sl

2(t) + θ
p
sl

2(t),

defined in equation (5.3), are reported. By definition, eext(t) is a nondecreasing
function of time, which allows one to assess the quality of the approximate solution
over the whole interval of interest. The same monotone character is presented also
by the current value of the error component in the evolution law, θd(t), which reflects
the irreversible phenomena associated with the admissible solution up to the current
time t. On the contrary, the error in the state law, θsl(t), which is defined in terms
of the free Helmholtz energy and its conjugate, will depend on the energy associated
with the current approximate solution. Thus its time variation will depend on the
behaviour of the current solution. Figure 5.13(a) and Figure 5.13(b) display the
sources of the error in the elastic law at t = 28.5.

In particular, because of the linearity of the elastic law and definition of the
statically admissible stress field as in (5.5), for the problem at hand, it follows that

θe
sl

2(t) =
∑

e

1

C

∫ xh
e+1

xh
e

|σe
ad(x, t) − Cε

e,e
ad (x, t)|2 dx =

= µ2(t)
∑

e

1

C

∫ xh
e+1

xh
e

∣
∣
∣
∣
∣

∫ xh
e+1

xh
e

f(ξ)Nh
e(ξ)dξ −

∫ x

xh
e

f(ξ)dξ

∣
∣
∣
∣
∣

2

dx,

(5.9)

which shows that the time variation of θe
sl(t) is the same as the variation of the exter-
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Figure 5.12: Time variation of the extended dissipation error and its components

nal load, even in presence of plastic loading. The previous result is obtained further
to the assumption that εp,e

ad (x, t) = hεp(xe,GP , t), thus Cε
e,e
ad (x, t) = hσ(xe,GP , t), where

only one Gauss point per element is used for the numerical integration of the con-
stitutive equations.

With regard, then, to the time variation of θp
sl(t), changes of θp

sl are noted if
plastic loading occurs otherwise θp

sl remains constant if the admissible thermody-
namic force Rad, and the thermodynamic force conjugate to the admissible accumu-
lated plastic strain, Hpad, do not vary, such as during elastic unloading. Also, when
plastic deformations should occur in the model, as identified by value different from
zero of Rad, but they are not detected by the admissible kinematic solution, pad,
a contribution different from zero to θp

sl comes from these parts of the domain Ω.
This circumstance is shown in Figure 5.13(c) and Figure 5.13(d) which report, for
instance, the pointwise contribution to the error in the hardening law at t = 28.5.
Even though the admissible accumulated plastic strain is zero all over the element
el = 4, a contribution different from zero to the error associated with the plastic
energy is obtained from this element for being, therein, the thermodynamically ad-
missible force different from zero. This may be interpreted as the plastic energy
that we have somehow to supply to this part of the domain, since the kinematically
admissible solution was not able to describe it.

Major critical insight in the causes that produce variation of the error in the
evolution law, θd, is obtained by analysing the pointwise contribution to θd within
a given time interval [tn, tn+1],

[tn,tn+1]ζ
2
d(x)

def
=

∫ tn+1

tn

[
R0‖ε̇p

ad(x, t)‖ − σad(x, t) : ε̇
p
ad(x, t) +Rad(x, t)ṗad(x, t)

]
dt
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(a) (b)

(c) (d)

Figure 5.13: The error in the state law at t=28.5 (a) Admissible stress σad versus stress conjugate
to the admissible elastic strain Cεead. (b) Pointwise contribution to the error in the elastic law,
1

C
(σad − Cεead)

2, at t=28.5 (c) Admissible thermodynamic force Rad versus force conjugate of

the admissible accumulated plastic strain Hpad. (d) Pointwise contribution to the error in the

hardening law,
1

H
(Rad −Hpad)

2, at t=28.5

which is next considered in its general tensorial notation.
By accounting for the definition of the admissible plastic strain and accu-

mulated plastic strain, the assumption of time linear variation for the admissible
solution over the time interval [tn, tn+1], it follows that

[tn,tn+1]ζ
2
d(x) =

‖∆ε
p
ad‖

2

[

R0 +Rad(x, tn+1) − ‖σD
ad(x, tn+1)‖nσD

ad
(x, tn+1) : n∆ε

p
ad

(x)
]

+

+
‖∆ε

p
ad‖

2

[

R0 +Rad(x, tn) − ‖σD
ad(x, tn)‖nσD

ad
(x, tn) : n∆ε

p
ad

(x)
]

,

(5.10)
where we have let

σD
ad(x, t) = ‖σD

ad(x, t)‖nσD
ad

(x, t), ∆ε
p
ad(x) = ‖∆ε

p
ad(x)‖n∆ε

p
ad

(x),

and it is, in general, R0 +Rad(x, t) − ‖σD
ad(x, t)‖ ≥ 0.
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As a result, if at the point x ∈ Ω the following expressions are valid

nσD
ad

(x, tn) : n∆ε
p
ad

(x) = +1

R0 +Rad(x, tn) − ‖σD
ad(x, tn)‖ = 0,

nσD
ad

(x, tn+1) : n∆ε
p
ad

(x) = +1

R0 +Rad(x, tn+1) − ‖σD
ad(x, tn+1)‖ = 0,

then there is no local contribution to the error in the evolution law from the current
time interval. This, in turn, means that given

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

σD
ad(x, t) =

t− tn

tn+1 − tn
σD

ad(x, tn+1) +
tn−1 − t

tn+1 − tn
σD

ad(x, tn)

Rad(x, t) =
t− tn

tn+1 − tn
Rad(x, tn+1) +

tn−1 − t

tn+1 − tn
Rad(x, tn)

ε
p
ad(x, t) =

t− tn

tn+1 − tn
ε

p
ad(x, tn+1) +

tn−1 − t

tn+1 − tn
ε

p
ad(x, tn)

pad(x, t) =
t− tn

tn+1 − tn
pad(x, tn+1) +

tn−1 − t

tn+1 − tn
pad(x, tn)

(5.11)

with ∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

‖σD
ad(x, tn)‖ − (R0 +Rad(x, tn)) ≤ 0

‖σD
ad(x, tn+1)‖ − (R0 +Rad(x, tn+1)) ≤ 0

Tr[∆ε
p
ad] = 0

∆pad = ‖∆ε
p
ad‖

nσD
ad

(x, t) : n∆ε
p
ad

(x) = +1, ∀t ∈ [tn, tn+1]

(5.12)

then, it follows that

∀ t ∈ [tn, tn+1],

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

‖σD
ad(x, t)‖ −

[

R0 +Rad(x, t)
]

≤ 0

‖ε̇p
ad(x, t)‖ − ṗad(x, t) ≤ 0

Tr[ε̇p
ad(x, t)] = 0

R0‖ε̇p
ad(x, t)‖ − σad(x, t) : ε̇

p
ad(x, t) +Rad(x, t)ṗad(x, t) = 0.

That is, the function (σad(x, t), Rad(x, t); ε
p
ad(x, t), pad(x, t)) defined as in (5.11)

upon the conditions (5.12) is an integral of the evolution law over the time interval
[tn, tn+1], (see Section 3.2.4.5). The difference from the exact solution, however,
lies in the diversity of initial condition met at tn. These observations are finally
visualized in Figure 5.14 which show the pointwise contribution to θd within the
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Figure 5.15: Extended dissipation error along with its components for different discretizations.
Evolution of the error in the state law and in the evolution law with respect to the global error as
the time step is reduced.

time interval [18.0, 19.5]. In conclusion, [tn,tn+1]ζd(x) can be equal to zero without
implying that the state variables do not change between tn and tn+1. Their variation
is, in fact, detected by the variation of the current error in the state law.

5.2.4 Analysis of the error

In this Section the behaviour of the extended dissipation error with respect to the
parameters that control the approximation, namely time step size and mesh size, is
investigated numerically. We start by analysing the relative importance of the error
components θsl and θd with respect to the global error eext.

Figure 5.15 describes the influence of the time discretization for a given finite

156



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 3 6 9 12 15 18 21 24 27 30

A
b

so
lu

te
 E

rr
o

r

Pseudotime, t

Extended Dissipation Error and its components
Finite Element Mesh : 7 elements. Time Stepme0 Dt =1.5

q
sl

q
d

q
eext

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30
Pseudotime, t

Ratio of Current Error Components to the Error as Supremum

R
a

ti
o

q

qsl

qd

/eext

/eext

/e
e
x
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 3 6 9 12 15 18 21 24 27 30

A
b

so
lu

te
 E

rr
o
r

Pseudotime, t

Extended Dissipation Error and its components
Finite Element Mesh me1: 14 elements. Time Step D t = 1.5

qsl

q
d

q
eext

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30
Pseudotime, t

Ratio of Current Error Components to the Error as Supremum

R
a

ti
o

q

qsl

qd

/eext

/eext

/e
e
x
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 3 6 9 12 15 18 21 24 27 30

A
b

so
lu

te
 E

rr
o
r

Pseudotime, t

Extended Dissipation Error and its components
Finite Element Mesh : 28 elements. Time Stepme2 D t 1.5=

q
sl

q
d

q
eext

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30
Pseudotime, t

Ratio of Current Error Components to the Error as Supremum

qd

slq /eext

R
a
ti

o
q

/e
e
x
t

/eext

Figure 5.16: Extended dissipation error along with its components for different discretizations.
Evolution of the error in the state law and in the evolution law with respect to the global error as
the finite element mesh is refined.

element mesh, which is the mesh me1 defined in Figure 5.9, whereas Figure 5.16
shows the influence of the space discretization for given time discretization realized
by uniform time step ∆t = 1.5. In general, one notes a reduction of the absolute
error eext along with the variation of the relative importance of its components.

In particular, Figure 5.15 shows that by reducing the time step, the variation
of θsl(t) remains almost unchanged whereas θd(t) reduces, so that θsl represents the
main error component. This behaviour is easier to comprehend if we consider the

time step contribution to the error in the evolution law given by

∫

Ω
[tn,tn+1]ζd(x)dx.

This is depicted in Figure 5.17 which compares two fully discrete schemes having
the same finite element mesh me1 and different time step, ∆t = 1.5 and ∆t = 0.75,
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Figure 5.17: Contribution to the error in the evolution law for given finite element mesh, me1,
and different time discretizations, time step ∆t = 1.5 and ∆t = 0.75 (a) Time step contribution to
the error in the evolution law (b) Time variation for the extended dissipation error along with its
components

Figure 5.18: Effect of the time step on the error in the evolution law for different time discretiza-
tions ∆t, ∆t′, ∆t′′, with ∆t = 2∆t′ and ∆t′ = 2∆t′′
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respectively. For the problem at hand, at a given point x ∈ Ω, the error in the
evolution law results from assuming a linear variation for the variables εpad, pad over
the whole time interval [tn, tn+1], whereas the time tc, which is the time when the
exact plastic loading occurs, belongs to ]tn, tn+1[. As a result, the exact linear
variation of εp and p occurs only over [tc, tn+1].

The reduction of the time step reduces the time interval during which the plas-
tic flow contributes to the error because of the linear interpolation. This situation
is sketched in Figure 5.18.

Figure 5.16, as well, shows that by refining the finite element mesh size the
error component θsl(t) reduces drastically so that θd constitutes the main error
component. The dependence of θsl on the mesh size h, and more specifically of θe

sl

on h, can also be revealed by a direct analysis of the equation (5.9). Figure 5.16
also shows that the dependence of θd on the mesh size is not well defined as it can
be inferred from comparing the variation of θd for the meshes me0 and me1. Here,
it is noted that θd increases by refining the mesh size. This behaviour is visualized
in Figure 5.19 which compares the time step contribution to the global error in the
evolution law for the previous schemes. This circumstance occurs as a result of a
larger area experiencing plastic loading detected by the mesh me1 with the elements
el = 7 and el = 8, as shown in Figure 5.20.

Another aspect taken into account in this section is to motivate the use of the
extended dissipation error by showing that this measure of the error does indeed
reflect the global quality of an admissible solution. This is proved numerically
on the model problem under consideration by investigating the behaviour of the
family of finite element approximations corresponding to values of the discretization
parameters approaching their limit values, that is,

∣
∣
∣
∣
∣
∣
∣
∣
∣

eext → 0 as h,∆t → 0

eext → eext,∆t as h→ 0

eext → eext,h as ∆t → 0

(5.13)

where eext,∆t and eext,h denote the error due to only time and space discretization,
respectively. That is, eext,∆t is defined as the error associated with the exact solution
of the nonlinear incremental boundary value problem obtained by performing only
the time discretization of the initial boundary value problem; whereas, eext,h is
the error associated with the exact solution of the system of differential algebraic
equations obtained by performing only the space finite element discretization of the
initial boundary value problem.

We also compare the time evolution of the extended dissipation error (which
can be thought of as an estimate of the error of the kinematically admissible vari-
ables) with the classical measures of the exact error defined as difference between
exact and approximate solution and introduced in Section 5.2.2. The aim of this
comparison is to show that the extended dissipation error describes quite well the
evolution of the approximate solution compared to the exact one. That is, the occur-
rence of (5.13) corresponds effectively to have the approximate solution approaching
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Figure 5.19: Contribution to the error in the evolution law for given time discretization, time
step ∆t = 1.5, and different finite element mesh, me0 and me1 (a) Time step contribution to
the error in the evolution law (b) Time variation for the extended dissipation error along with its
components
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to the exact one, to the solution of the time discrete scheme and of the space discrete
scheme, respectively.

The results of these studies are delivered in Figures 5.21 and 5.22. In particular,
Figure 5.21 shows the effects of the space discretization error by comparing fully
discrete schemes which present the same uniform time discretization defined by
∆t = 1.5 and the finite element meshes depicted in Figure 5.9. The asymptotic
behaviour of the error measures, however, is better appreciated by considering the
variation for fixed values of the time. These diagrams are reported in the same figure
and describe the variation of the error at t = 1.5, t = 6, t = 24.0 and t = 30.0.
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Figure 5.21: Extended dissipation error and classical measures of the exact error. Effect of space
discretization for given time discretization. Time step ∆t = 0.75.

At t = 1.5, the behaviour of the bar is elastic, consequently the extended dissi-
pation error along with the other measures of the error, which involve gradient of the
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displacement, exhibit a linear rate of convergence which is the type of convergence
of the error in energy norm for linear elements, (see, e.g., Babuska & Rheinboldt,
1978b) or (Ciarlet, 1978). In fact, for elastic behaviour it is

σad(x, t) = µ(t)σad(x); εe
ad(x, t) = εad(x, t) = µ(t)εad(x)

whereas the other state variables vanish. Thus equation (5.3) reduces to the same
expression obtained in linear elasticity

e2ext(T ) = sup
t≤T

µ2(t)

∫

Ω

(
σad(x) − Cεe

ad(x)
)
: C

−1
(
σad(x) − Cεe

ad(x)
)
dx (5.14)

which is the norm of the error induced by the elastic energy once one normalizes the
error with respect to the load multiplier.

At the other time instants tn plastic deformations occur in the bar. Hence, in
this case, it is interesting to note that the functions eext(tn, h), ‖eεad

‖L∞([0,tn];L2(Ω)(h)
and ‖eGSF‖L∞([0,tn];V×M)(h) take values different from zero for h → 0. This is due
to the presence of the time discretization error. Hence, only enrichment of the finite
dimensional space, without also refining the discretization in time, may not improve
the accuracy of the numerical solution.

Finally, the diagrams given in Figure 5.22 aim to highlight the effect of the
space discretization error. To this end, numerical simulations have been carried out
on given finite element mesh whereas the time step size ∆t was changed. In general
a reduction of the extended dissipation error is observed as the time step size ∆t
is reduced, though the reduction is not as pronounced as the one obtained by the
enrichment of the mesh. Also here, the error presents a value different from zero as
∆t → 0, due to the influence of the space discretization error.

As for the time variation of the classical measures of the exact error, as a
result of the little influence of the time discretization, it is interesting to note that,
for example, the diagram of the L2L∞ of the exact error of the total strain shows
that starting from t ≥ 21 we have the same time evolution of the error using different
time discretizations. This behaviour is to be related to the one dimensionality of the
model problem under consideration. Even considering other time discretizations, the
elements of the discrete model experiencing plastic loading are the same for t ≥ 21.
Hence, since at the same load level, we have the same system state, it follows that
the variation of state from one time instant to the other is the same.

Figure 5.22 reports as well the variation for the different time discretizations
of the error computed at the time instants t = 1.5, t = 6.0 and t = 21.0. These
diagrams, likewise the previous one, allow one to appreciate better the asymptotic
behaviour of the error with respect to ∆t. At t = 1.5 a constant value is obtained
for all the error measures. This is due to the fact that the behaviour of the discrete
model is elastic, hence no time discretization error is introduced since the elastic
constitutive equation is integrated exactly. The plots relative to t = 6.0 and t = 21.0,
on the other hand, show that reducing the time step size beyond a certain limit value
has no effect on the error, hence no benefit can be expected on the improvement of

163



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

.375 .75 1.5 3 6

A
bs

ol
ut

e 
E

rr
or

, e

Time Step ∆t

Extended Dissipation Error at given time instants

t=1.5
t=6.0
t=21.0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

.375 .75 1.5 3 6

A
bs

ol
ut

e 
E

rr
or

, e

Time Step ∆t

L∞L2 Norm of the Exact Error on the Total Strain at given time instants

t=1.5
t=6.0
t=21.0

0

0.05

0.1

0.15

0.2

0.25

0.3

.375 .75 1.5 3 6

Time Step ∆t

L∞Complementary Energy Norm of the Exact Error on the Generalised Stress Field
 at given time instants

t=1.5
t=6.0
t=21.0

Figure 5.22: Extended dissipation error and classical measures of the exact error. Effect of time
discretization for given finite element mesh. Mesh with 56 elements.

the accuracy of the solution, which relates to the error due to the discretization in
space.

Remark 5.3. In Orlando & Peric (2000) by generalizing the error in the constitutive
equations for linear elasticity, the extended dissipation error has been interpreted
as an estimate of the error of the kinematically admissible variables. For linear
elastic behaviour of the discrete model, we have seen that the extended dissipation
error reduces to the energy norm of the error in the displacement which shows a
linear convergence rate with the mesh size. When plastic loading occurs, several
rate of convergence for the state variables are noted, (see, e.g., Johnson, 1977; Han
& Reddy, 1999). Since the extended dissipation error account for the error in all
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the variables, its rate of convergence should be influenced by the lower one.

5.3 Dissipation Error

The dissipation error has been defined in Section 3.5.1.1 as the error in the con-
stitutive equations produced by a field sad(x, t) = (σad(x, t),Xad(x, t), Rad(x, t);
uad(x, t), εad(x, t), ε

p
ad(x, t),αad(x, t), pad(x, t)) which meets the compatibility equa-

tions, the equilibrium equations, the initial conditions and the state law. In order to
apply this theory for the assessment of the quality of a finite element solution, the
general considerations given in Section 5.2 for the use of the extended dissipation
error apply. The solution of a fully implicit conforming finite element displacement
formulation of the elasto-plastic problem, to which we refer in the following, is in
general not admissible, for the finite element stresses do not satisfy the equilibrium
equations in a pointwise manner. As a result, to evaluate the dissipation error as
indication of the error of the finite element solution, one needs first to build an
admissible solution which is as close as possible to the computed finite element so-
lution. This will be the object of the first part of this section where such criteria
are given for the Prandtl-Reuss model with linear elasticity and linear hardening
following the works of Moës (1996) and Ladevèze & Pelle (2001). In the second
part, after recalling the expressions of the dissipation error and of the error in so-
lution, numerical comparisons of this error with the extended dissipation error will
be illustrated on a 1D model problem.

5.3.1 Construction of the admissible solution

The Prandtl Reuss plasticity model with Linear Hardening
The equations for this model have been recalled in Section 5.2.1. Likewise the
extended dissipation error, equation (3.45) expresses the dissipation error at the
time tn+1 in terms of its value at tn and of the admissible solution over [tn, tn+1].
As a result, the admissible solution can be obtained in an incremental manner.

Consistently with an assumed linear variation of the external load over each
time interval and a normal formulation of the model as introduced in Ladevèze
(1989), the admissible solution can be taken to vary linearly over [tn, tn+1] so that
for its complete definition one needs to compute only the value at tn+1.

The criteria to build a statically admissible stress field in terms of the computed
finite element stresses are the same as the one presented for the extended dissipation
error. These criteria, in fact, are not dependent on the constitutive model.

The definition of an admissible displacement field, on the other hand, requires
some further consideration because of the constraint imposed by the Hooke’s law,

σad(x, tn+1) = Cεe
ad(x, tn+1).

In fact, for a plasticity model which does not conserve volume, one can simply
assume uad(x, tn+1) = uh(x, tn+1). The associated admissible plastic strain field
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would then be given by

ε
p
ad(x, tn+1) = ∇su

h
n+1(x) − C

−1σad(x, tn+1). (5.15)

In the case of a J2-flow theory, such as for the Prandtl-Reuss model under
consideration, on the contrary, the choice uad(x, tn+1) = uh

n+1(x) is not always
possible. The plastic strain given by (5.15) may not meet the incompressibility
condition

Tr[∇su
h
n+1(x) − C

−1σad(x, tn+1) − ε
p
ad(x, tn)] = 0 (5.16)

and, consequently, the dissipation error would not assume a finite value. In such a
case, then, one needs to define uad(x, tn+1) so that condition (5.16) is met.

A procedure to build such an admissible displacement field is given in Moës
(1996) who adapts the method proposed in Gastine et al. (1992) for incompressible
elasticity. However, for 1D problems and plane stress state problems, one can assume
without restriction uad(x, tn+1) = uh

n+1(x) and adjust the transversal component of
the plastic strain to realize the incompressibility condition.

As for the definition of the admissible accumulated plastic strain pad(x, tn+1),
we can follow the general procedure indicated in Section 5.2.1. This determines
pad(x, tn+1) as minimizer of the pointwise contribution to the dissipation error within
the time step [tn, tn+1] and under the further constraint Rad(x, tn+1) = Hpad(x, tn+1),
which imposes the respect of the hardening law.

The general problem given in Box 5.1 would then specialize as in Box 5.3.
It is trivial to check that the exact solution of this problem is given by

pad(tn+1) = max
{

‖σD
ad(tn+1)‖ − R0; pad(tn) + ‖εp

ad(tn+1) − ε
p
ad(tn)‖

}

.

Once all the admissible state variables have been computed at tn+1, the use of a time
linear interpolation over [tn, tn+1] guarantees the admissibility of the solution for the
convexity of the equilibrium and compatibility conditions and for the linearity of the
state law as a result of having expressed the model into normal form. Yet, the above
procedure delivers an admissible solution which produces a finite value of the error
for the convexity of the domains E and C introduced in Section 3.2.4.5.

5.3.2 Error Expressions

Error in the constitutive equations

In the previous section we have seen that the admissible solution for the computa-
tion of the dissipation error, unlike the one used for the definition of the extended
dissipation error, is required to meet the state laws. As a result of this constraint
between the admissible static variables and their conjugate kinematic one, the resid-
ual in the state law vanishes and the accuracy of the admissible solution is defined
only in terms of the residual produced in the evolution equations, which are the only
equations of the model not to be satisfied. The error in the constitutive equations
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is, therefore, given by

e2dis(tn+1) = e2dis(tn) +

(5.17)

+2

∫

Ω

∫ tn+1

tn

[

R0‖ε̇p
ad(x, t)‖ − σad(x, t) : ε̇

p
ad(x, t) +Rad(x, t)ṗad(x, t)

]

dt dΩ

where

Box 5.3. Definition of the admissible accumulated plastic strain as minimization of the

dissipation error

For each x ∈ Ω

Given: σad(x, tn), σad(x, tn+1),

ε
p
ad(x, tn), ε

p
ad(x, tn+1),

pad(x, tn), Rad(x, tn) = Hpad(x, tn)

Find: pad(x, tn+1)

such that by assuming a time linear variation over [tn, tn+1] of the vari-
ables

σad(x, t), Rad(x, t);

ε
p
ad(x, t), pad(x, t),

we realize the minimum of the following function

F (pad(x, tn+1)) =

=

∫ tn+1

tn

[

R0‖ε̇p
ad(x, t)‖ − σad(x, t) : ε̇

p
ad(x, t) +Rad(x, t)ṗad(x, t)

]

dt

under the following constraints

∀ t ∈ [tn, tn+1]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

‖σD
ad(x, t)‖ − (Rad(x, t) +R0) ≤ 0,

ṗad(x, t) ≥ ‖ε̇p
ad(x, t)‖,

Tr[ε̇p
ad(x, t)] = 0

Rad(x, t) = Hpad(x, t)

e2dis(tn) =

=
n−1∑

i=1

2

∫

Ω

∫ ti+1

ti

[

R0‖ε̇p
ad(x, t)‖ − σad(x, t) : ε̇

p
ad(x, t) +Rad(x, t)ṗad(x, t)

]

dt dΩ.
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The expression (5.17) fits well the incremental origin of the admissible solution
as described in the previous section, and because sad(x, t) is continuous piecewise
linear over each time interval [ti, ti+1], it follows

∫

Ω

∫ ti+1

ti

[

R0‖ε̇p
ad(x, t)‖ − σad(x, t) : ε̇

p
ad(x, t) +Rad(x, t)ṗad(x, t)

]

dt dΩ =

=

∫

Ω

{

R0‖∆ε
p
ad,i(x)‖ − σad(x, ti+1) + σad(x, ti)

2
: ∆ε

p
ad,i(x) +

+H
(
p2

ad(x, ti+1) − p2
ad(x, ti)

)}

dx

where we have let
∆ε

p
ad,i(x) = ε

p
ad(x, ti+1) − ε

p
ad(x, ti)

The value of the dissipation error at t1 = 0, e2dis(t1), is assumed equal to zero.

Error in solution

In Section 3.5.3.1, as a result of the inequality (3.77) which represents an extension
of the Prager-Synge theorem for the dissipation error, it was shown that e2dis(T )
provides an upper bound for the error in solution, e2ex(T ), defined as the error in the

constitutive equations produced by sex,ad =
(

σex, Rex; uad, ε
p
ad, pad

)

and given by

equation (3.73).

5.3.3 Comparison between the two errors

The numerical performance of the dissipation error has been object of study in
Moës (1996) and Ladevèze & Moës (1997). Therein, numerical applications are
given for 2D models with constitutive equations obeying the Prandtl–Reuss law and
the corresponding viscoplastic law. In the following, we are mainly interested in
looking at how the dissipation error compares with the extended dissipation error in
the assessment of the quality of the same finite element solution. With this regard,
the same 1D model problem described in Figure 5.3 and discretized in Figure 5.9
has been considered.

The plots in Figure 5.23 and 5.24 recall the asymptotic behaviour of the dis-
sipation error with respect to the discretization parameters h and ∆t, respectively.
These diagrams show the ability of the dissipation error to detect effects of time and
space discretization, respectively.

Furthermore, it is worth noting that the time evolution of the dissipation
error of an elastic finite element solution is not linear, thus the dissipation error
does not reduce to the error in the constitutive equations obtained in the case
of linear elasticity, unlike the extended dissipation error. The admissible solution
corresponding to an elastic finite element solution must be necessarily a plastic
solution: if this was not the case, the admissible solution would be the exact solution,
for its associated dissipation would be zero.
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Figure 5.23: Time Variation of the Dissipation error. Effect of space discretization for given time
discretization. Time step ∆t = 0.75.
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Figure 5.24: Time Variation of the Dissipation error. Effect of time step refinement for given
finite element mesh. Mesh with 56 elements.

Nevertheless, the variation of the error edis at t = 1.5 with the time step size
and for the discrete models which present t = 1.5 in the definition of the load levels,
show that the time step has no influence on the value of the error. The finite element
solution is, in fact, elastic, thus it does not depend on the time discretization and
so also the corresponding admissible solution.

Figure 5.25 compares more specifically the time evolution of the dissipation
error and of the extended dissipation error for two different discrete schemes. These
schemes have been chosen as examples of two extreme situations. In fact, according
to the analysis with the extended dissipation error, the error in the evolution law,
θd, for one scheme and the error in the state law, θsl, for the other, represent the
main error components, respectively. We recall that both the dissipation error, edis,
and the extended dissipation error, eext, are measures of the error in the constitutive
equations, but they assess the quality of different admissible solutions corresponding
to the same finite element solution.

In both the discrete models, the dissipation error presents values of the error
higher than the extended dissipation error and it is closer to the latter for the
discrete model which has θd as main error component of eext. This behaviour is to
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Figure 5.25: Time variation of the Dissipation and Extended Dissipation error

0

0.05

0.1

0.15

0.2

0.25

0.3

0 3 6 9 12 15 18 21 24 27 30

In
cr

em
en

ta
l E

rr
or

Pseudotime, t

Time Step Contribution to the Dissipation Error

 Time Step ∆t=3.0; me3
 Time Step ∆t=0.75; me1

0

0.05

0.1

0.15

0.2

0.25

0.3

0 3 6 9 12 15 18 21 24 27 30

In
cr

em
en

ta
l E

rr
or

Pseudotime, t

Time Step Contribution to the Error in the Evolution law for the Extended Dissipation Error

 Time Step ∆t=3.0; me3
 Time Step ∆t=0.75; me1

(a) (b)

Figure 5.26: Contribution to the error in the evolution law for the two fully discrete schemes
analysed (a) Dissipation error (b) Extended dissipation error

be related finally to the major dissipation associated with the admissible solution
defined for the computation of the dissipation error. Thus, the previous plots point
to the higher effectiveness of the extended dissipation error for the assessment of the
quality of the finite element solution.

In conclusion, it is interesting to note the strictly increasing character of the
dissipation error during the whole time evolution due to the L1 accumulation in
time of the residual of the admissible solution in the evolution law, which is always
positive, as it is shown in Figure 5.26. In fact, by adapting the observations of
Section 3.5.2, one concludes that there is variation of the state variables if and only
if the dissipation error is different from zero.

5.4 Concluding Remarks

In this Chapter we have shown how to use the extended dissipation error introduced
by Ladevèze et al. (1999) to assess the quality of finite element solutions of elasto-
plastic problems with the mesh constant throughout the loading process. The main
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problem was, therefore, the definition of a corresponding admissible solution, which
reflects the approximations associated with the finite element solution. After giving
general guidelines, actual criteria to construct an admissible solution in the case of
the Prandtl–Reuss model have been given. The general theory has then been applied
to assess the quality of the finite element solution of a one dimensional elastoplastic
bar under axial load. The extended dissipation error allows one to appreciate the
importance of the effects of time discretization and also to show that the regions at
the initial stage of plastic deformation contribute significantly to the error compo-
nent associated with the evolution law, whereas already plastified sub–domains add
only low values to the error. This circumstance has been justified on the basis of
the specific material model under consideration.

Analysis of the relative importance of the error components associated with
the residual in the state law, which depends on the current approximation of the
finite element mesh, and the error component associated with the residual in the
evolution law, which has nondecreasing character and accounts for the error in the
history of the variables, has been presented.

Notable has also been the comparison with classical measures of the exact error
in solution. This has showed that the extended dissipation error reflects quite well
the evolution of the admissible solution with respect to the exact one as described
by more classical measures of the error.

Comparison with the dissipation error defined by Ladevèze (1989) has also
been given. Extended dissipation error and dissipation error assess the accuracy of
different admissible solutions associated with the same finite element solution. The
dissipation error delivered values of the error higher than the extended dissipation
error and it was closer to the latter for the discrete model which had θd as the main
error component of eext.

In this Chapter, the finite element mesh was constant in time. As a result, the
time linear interpolation of the discrete values was a continuous function over the
time interval of interest. Consequently, also the corresponding admissible solutions
were time continuous. Objective of the next Chapter is to prescribe a change of finite
element mesh at a given time instant tn. In this case, the time linear interpolation
of the computed finite element solutions and the associated admissible solution will
have a discontinuity jump at the time instant tn. The global accuracy in time of
this solution will be assessed by means of the augmented extended dissipation error
developed in Section 3.5.2.2.
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Chapter 6

Numerical studies of transfer
operations for adaptive finite
element solutions

6.1 Introduction

Use of adaptive strategies in the finite element solution of history-dependent elasto-
plastic problems with incremental procedures is of paramount importance. An adap-
tive strategy can be defined as a computational procedure which delivers the finite
element solution for the problem at hand to the prescribed accuracy. Key ingredients
are, therefore, among others, the availability of an error estimator, which accounts
for the sources of error associated with the approximation, and of a transfer proce-
dure, which defines the data of the one step fully discrete problem in the case the
current finite element mesh is different from the one of the previous time step.

In the previous chapter, it has been shown that the extended dissipation error
applied to the assessment of the accuracy of the finite element solution obtained
by a fully implicit displacement formulation of the elastoplastic problem is able
to account for the effects of time and space discretization. Therein, the analysis
has been carried out by assuming finite element mesh constant during the whole
evolution. A property of this error is its non–decreasing character in time due to
the accumulation of the discretization errors. As a result, during the computation
with incremental procedures, one may need to modify the parameters which define
the fully discrete scheme, namely time step size and finite element mesh, in order
to obtain the corresponding solution to the prescribed global accuracy.

When only variation of the time step is sufficient to improve the accuracy of
the solution, the extended dissipation error presented in the previous chapter can be
used to assess the global quality of the finite element approximation because of the
time continuity of the associated admissible solution. On contrary, when the finite
element mesh is changed at time tn, two finite element solutions are considered
for the same load level: the one at t−n , which is associated with the mesh Thn ,
(henceforth, called old mesh), and the other at t+n , which is associated with the
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mesh Thn+1 , (henceforth, referred to as a new mesh). The solution at t+n is employed
to define a time linear interpolation function which we require to satisfy the following
property

lim
∆t↓0

fd(tn + ∆t) = lim
∆t↓0

fi(tn + ∆t)

where fi = fi(tn + ∆t) denotes the time linear interpolation over the time interval
[t+n , t

−
n+1] of the discrete values f+

n and f−
n+1 whereas fd = fd(tn +∆t) is the function

which associates with any given ∆t the solution of the discrete scheme corresponding
to the given ∆t and data f+

n . Consequently, a discontinuity jump appears in the
time linear interpolation of the discrete values across the time node tn as a result
of the change of mesh and transfer procedure. The global accuracy in time of the
solution, therefore, will have to depend not only on the time step and finite element
mesh size but also on the value of the jump.

The extended dissipation error, augmented in Section 3.5.2.2 by the term which
accounts for time discontinuity in the admissible solution, lends itself to be used for
this objective. Its applicability will be illustrated on a 1D model problem where
several type of change of meshes and transfer procedures (Ortiz & Quigley, 1991;
Perić et al., 1996; Rashid, 2002) have been analysed.

6.2 Numerical studies of transfer operations for

adaptive finite element solutions

6.2.1 Augmented Extended Dissipation Error

For the implementation of the augmented extended dissipation error, the general
concepts given in Section 5.1 remain still valid. An admissible solution as close as
possible to the given finite element solution needs first to be defined so that it can
mirror all the approximations affecting the finite element solution.

In the following, for the Prandtl Reuss model, we first present, how, given the
admissible solution at t−n and the finite solution at t+n , we build the corresponding
admissible solution at t+n . Successively, numerical applications of the augmented
extended dissipation error aimed to compare the quality of different transfer pro-
cedures will be illustrated. Analysis of the reliability of the new error estimator in
reflecting the quality of the finite element solution in the presence of change of mesh
will be also performed.

6.2.1.1 Construction of the admissible solution

The Prandtl Reuss plasticity model with Linear Hardening
The essential equations of this model are given in Section 3.2.4.5 and are next
recalled.

Yield Condition: ‖σD
ad‖ − (Rad +R0) ≤ 0, Rad ≥ 0
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slη2
x,t(σad, Rad; εe

ad, pad) =
(

σad − Cεe
ad

)

: C
−1
(

σad − Cεe
ad

)

+

+
(

Rad − Hpad

)

H
−1
(

Rad − Hpad

)

;

dη2
x,t(σad, Rad; ε̇

p
ad, ṗad) = R0‖ε̇p

ad‖ − σad : ε̇
p
ad +Radṗad,

with Tr[ε̇p
ad] = 0 and ṗad ≥ ‖ε̇p

ad‖, where ‖q‖ =
√

q : q is the norm of the second
order tensor q.

In Section 5.2.1, we have seen in the case of finite element mesh constant in
time that the criteria for definition of the admissible solution corresponding to the
finite element solution at tn+1 were expressed only in terms of the admissible solution
at tn and of the finite element solution at tn+1. Therein, the cause of the variation
of the state of the system was a change of load. The latter is important only as
far as the definition of a statically admissible stress field was concerned. Hence,
the same criteria can be used to define the admissible solution corresponding to the
finite element solution at the time instant t+n , provided that one replaces tn+1 with
t+n . The general procedure is recalled in Box 6.1.

Box 6.1. Procedure to build an admissible solution at t+n in presence of change of mesh

DATA:

Admissible solution at t−n

∣
∣
∣
∣

σad(x, t−n ), Rad(x, t−n ),

εad(x, t−n ), ε
p
ad

(x, t−n ), pad(x, t−n ).

Finite element solution at t+n

∣
∣
∣
∣
∣

u
hn+1
n (x), ε

hn+1
n (x) = ∇su

hn+1
n (x)

hn+1ε
p
n(x), hn+1pn(x), hn+1σn(x)

FIND:

Admissible solution at t+n

∣
∣
∣
∣

σad(x, t+n ), Rad(x, t+n )

εad(x, t+n ), ε
p
ad(x, t+n ), pad(x, t+n )

WHERE

Admissible generalised

stress field at t+n :

σad(x, t+n ), Rad(x, t+n )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∫

Ω
σad(x, t+n ) : ∇η(x)dΩ =

∫

Ω
bn(x)η(x)dΩ+

+

∫

∂Ωt

tn(x)η(x)ds, ∀η ∈ V0,

∀Ω
hn+1
e ∈ Thn+1

,

∀Ni, ∀ vertex nodes i

∫

Ω
hn+1
e

[σad(x, t+n ) − hn+1σn(x)] : ∇NidΩ = 0

Rad = max {R1, R2}

where R1 = ‖σD
ad(x, t+n )‖ − R0

R2 = Rad(x, t−n )

Admissible kinematic

solution at t+n :

εad(x, t+n ),

ε
p
ad

(x, t+n ), pad(x, t+n )

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

uad(x, t+n ) = u
hn+1
n (x), εad(x, t+n ) = ∇suad(x, t+n )

IF σad(x, t+n ) :
[
hn+1εp

n(x) − ε
p
ad

(x, t−n )
]
≥ 0

ε
p
ad(x, t+n ) = hn+1ε

p
n(x)

ELSE

ε
p
ad(x, t+n ) = ε

p
ad(x, t−n )

END IF

pad(x, t+n ) = pad(x, t−n ) + ‖εp
ad

(x, t+n ) − ε
p
ad

(x, t−n )‖

Remarks
1. As already mentioned in Section 4.5, in order to define an admissible solution,
a hypothesis on the distribution over each element of the state variables, which are
obtained from the finite element solution at t+n at the Gauss points of the new mesh,
must be made. This assumption is implicitly required by the transfer procedures
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described in Ortiz & Quigley (1991) and Rashid (2002), for example, and we require
it to apply also for the variables defined with the smoothing transfer by Perić et al.
(1996). Hereafter, we refer to the distributions depicted in Figure 5.1. As a result,
the error in the constitutive equations must be considered as the error associated
with this given postulation for the variables distribution which will also allow one
to quantify the discontinuity of the fields across the time node tn.
2. The admissible solution at t−n is known at the Gauss points of the old mesh,
which are employed to compute numerically the space integrals that define the error
at t−n . The element based quadrature of the space integrals that define the error at
t+n , on the other hand, requires the knowledge of the admissible solution at t+n at the
quadrature points of the new mesh. In order to implement the procedure shown in
Box 6.1, the values of the fields ε

p
ad(x, t

−
n ) and pad(x, t

−
n ) also at the quadrature points

of the new mesh are necessary. These are obtained simply by suitable interpolation
of their values at the Gauss points of the old mesh.
3. Finally, a special remark deserve the statically admissible stress fields σad(x, t

−
n )

and σad(x, t
+
n ) which correspond to the same load level but they are defined as

prolongation of different finite element stresses.

Figure 6.1: Finite element solutions and admissible solutions for change of finite element mesh
Thn

→ Thn+1
at the time instant tn.

Figure 6.1 reports schematically the notation relative to the finite element solutions
and corresponding admissible solutions in the case of change of finite element mesh
at the time instant tn.

6.2.1.2 Error Expressions

We recall hereafter the error expressions for the Prandtl Reuss model under consid-
eration by highlighting the terms due to the change of mesh both in the classical
measures of the exact error and in the augmented extended dissipation error.
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Classical measures of the exact error in solution

For the same reasons expressed in Section 5.2.2, here we also assume a global control
of the exact error, which is of L∞ type in time and L2 in space of the exact error of
the total admissible strain,

‖eεad
‖L∞([0,T ];(L2(Ω))d×d) = SUP

t≤T
‖eεad

(x, t)‖(L2(Ω))d×d =

= MAX
{

SUP
t≤t−n

‖eεad
(x, t)‖(L2(Ω))d×d , SUP

t+n ≤t≤T

‖eεad
(x, t)‖(L2(Ω))d×d

}

along with the L∞ norm in time of the free complementary energy norm of the
exact error of the generalised stress field conjugate of the kinematically admissible
solution, that is,

‖eGSF‖L∞([0,T ];V×M) = SUP
t≤T

{
‖eσ̃(x, t)‖2

V + ‖eR̃(x, t)‖2
M

} 1
2 =

= MAX
{

‖eGSF‖L∞([0,t−n ];V×M), ‖eGSF‖L∞([t+n ,T ];V×M)

}

.

In both the above expressions, the exact error has been split into two terms corre-
sponding to the two different meshes at the time tn. The term relative to the time
interval [0, t−n ] refers to the old mesh, that is, to the initial mesh, whereas the term
relative to the time interval [t+n , T ] refers to the new mesh, that is, to the mesh with
improved approximation. The splitting of the error shows that as a result of the
L∞ control in time of the error, which is expressed as a suitable norm in space of
the current exact error, there is reduction in the value of the error, that is, the error
will not increase, if the current error at t+n is not greater than the global error at t−n .
These observations will appear clearer in the following.

Error in the constitutive equations

This error measure is given by equation (3.69) which we recall for reader’s conve-
nience,

e
n,c2

ext (T ) = MAX

{

eo2

ext(t
−

n )
︷ ︸︸ ︷

sup
t≤t−n

[

2

∫

Ω

slη2
x,t dΩ

︸ ︷︷ ︸

θo2
sl (t)

+ 2

∫

Ω

∫ t

0

dη2
x,τ dτ dΩ

︸ ︷︷ ︸

θo2
d (t)

︸ ︷︷ ︸

θo2(t)

]

,

(6.1)

sup
t+n ≤t≤T

[

2

∫

Ω

slη2
x,t dΩ

︸ ︷︷ ︸

θ
n,c2

sl
(t)

+θo2

d (t−n ) + 2

∫

Ω

∆ζ2
d(x, tn) dΩ

︸ ︷︷ ︸
∆θ2

d
(tn)

+ 2

∫

Ω

∫ t

t+n

dη2
x,τ dτ dΩ

︸ ︷︷ ︸

[t+n , t]θ
n,c2

d
︸ ︷︷ ︸

θn,c2 (t)

]}

.

176



In equation (6.1), the notation e
n,c2

ext (T ) has been adopted in place of ∆e2ext(T ) used
in equation (3.69). Here, the superscripts ”o” and ”n, c” stand for old and new
mesh (after change), respectively. The expressions of slη2

x,t and dη2
x,t are reported

at the beginning of section 6.2.1.1, whereas for the Prandtl–Reuss model, the term
∆ζ2

d(x, tn) is given by equation (3.51), i.e.,

∀x ∈ Ω

∆ζ2
d(x, tn) = lim

∆t→0+

∫ tn+∆t

tn

{

R0‖ε̇p
ad,∆t(x, τ)‖ +

−σad,∆t(x, τ) : ε̇
p
ad,∆t(x, τ) +Rad,∆t(x, τ)ṗad,∆t(x, τ)

}

dτ =

= R0‖εp
ad(x, t

+
n ) − ε

p
ad(x, t

−
n )‖ +

−σad(x, t
+
n ) + σad(x, t

−
n )

2
: (εp

ad(x, t
+
n ) − ε

p
ad(x, t

−
n )) +

+
Rad(x, t

+
n ) +Rad(x, t

−
n )

2
(pad(x, t

+
n ) − pad(x, t

−
n ))

At this point, some comments are deemed useful on the structure of equation
(6.1) which will help to gain some insight on the error evolution in presence of
change of mesh. These observations recall the one exposed previously for the exact
error. Similar remarks are also reported in Ladéveze et al. (1986) and Coffignal
(1987) with regard to the error in the constitutive equations according to Drucker
inequality. However, in this case, no additional term has been assumed to account
for the discontinuity of the admissible solution.

In (6.1) we can distinguish primarily two terms. One, θ2
d, is related to the

history of the variables by means of an L1 accumulation in time of the error in
the evolution law, whereas the other term, θ2

sl, depends on the current value of the
error in the state law. As a result, further to change of mesh, only the term θ2

sl can
be reduced whereas the term θ2

d increases by the quantity ∆θ2
d. Therefore, there is

an advantage to change mesh for given definition of the initial data if at least the
following inequality is satisfied

θo2

sl (t
−
n ) ≥ θ

n,c2

sl (t+n ) + ∆θ2
d(tn). (6.2)

The occurrence of (6.2) guarantees that θn,c(t+n ) ≤ eo
ext(t

−
n ). Figure 6.2 visualizes

the meaning of the several terms which appear in (6.1). In the picture, the jump ∆

is given by
√

θo2

d (t−n ) + ∆θ2
d(tn) − θo

d(t
−
n ).

The augmented extended dissipation error gives the same qualitative informa-
tion of the exact error in solution which, finally, is to be related to the type of error
control in time. However, it also shows that there will be no convenience to change
mesh if the error associated with the evolution law, which is the error component
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Figure 6.2: Components of the augmented extended dissipation error for change of mesh at tn.
Terms relative to the old mesh (o) and to the new mesh (n, c) after change of mesh.

that cannot be reduced for being associated with the quality of the solution up to
the current time tn, assumes values close to the prescribed global tolerance, that is,
if the error associated with the past history of the solution has been relevant. This
circumstance would indicate that if a global control of the solution is sought for,
the incremental finite element analysis should be repeated from the beginning by
starting with a finer initial mesh (see Ladéveze et al., 1986).

Error in solution .
The expression of the error in solution is given by equation (5.4). The jump
term is not included because of the time continuity of the exact static solution
(σex(x, t), Rex(x, t)) as discussed in Section (3.5.3).

6.2.1.3 Numerical examples

The performance of the error (6.1) to assess the quality of the finite element solution
obtained with an incremental procedure and in presence of change of the finite
element mesh at the time instant tn is here illustrated on the same 1D model problem
as introduced in Section 5.2.3.

The initial fully discretization of the model problem is realized with uniform
time step ∆t = 1.5 and the non uniform mesh me1 of 14 linear elements depicted in
Figure 6.3. A prescribed type of change of mesh along with a certain definition of
the initial data is then assumed to occur at the time tn = 25.5. At this time instant
plastic loading starts to localize once the load has been reversed in sign. This is
shown in Figure 5.5 which illustrates the evolution of the exact solution.

In the following, we will consider first the case of change between embedded
meshes, and then the case of not embedded meshes. In both cases, the augmented
extended dissipation error (6.1) will then be used to assess the quality of the resulting
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Figure 6.3: Change between embedded meshes

finite element solution.

Analysis of the error: Change between embedded meshes
The type of change of finite element meshes which is considered in this section is
given in the same Figure 6.3. For this example of change of meshes the condition
Vhn ⊂ Vhn+1 is realized between the interpolating spaces of the displacement field
by means of a refinement of the old mesh me1. In particular, the new mesh me2
has been obtained by halving the corresponding elements of the mesh me1.

Three types of definition of initial state ε̃pn(x), p̃n(x) on the new mesh me2 to
restart the finite element analysis at the time tn = 25.5 have been taken into account.
These definitions exemplify the three groups of transfer procedures introduced in
Section 4.5: variationally consistent transfer, weak enforcement of continuity and
smoothing transfer.

The variationally consistent transfer is obtained by sampling at the Gauss
points of the new mesh the fields hnεpn(x) and hnpn(x), whose distribution assump-
tion must comply with the requirements dictated by equation (4.13). Here, these
fields have been obtained over each element as prolongation into a constant func-
tion of the value at the respective unique Gauss point used for the quadrature of
the elemental contribution to the internal virtual power. Since the elements of the
new mesh are obtained by refinement of the corresponding old element, it follows
that the mapping of hn(•)n(x) into ˜(•)n(x) reduces to the identity operator. This
transfer particularizes to linear elements the transfer adopted by Ortiz & Quigley
(1991) for quadratic triangular elements and it is consistent with the constant total
strain formulation of the element. This definition is, however, different from the
transfer proposed by Radovitzky & Ortiz (1999). These authors, indeed, consider
the Voronoi tessellation of the whole domain Ω defined by all the Gauss points,
whereas here we have assumed the Voronoi tessellation of the element to which the
Gauss points belong. Consequently, in the former case, the resulting partition of
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Figure 6.4: Different plastic strain distribution assumption referred to the finite element mesh
me1 and to the Voronoi tessellation of Ω with respect to Gauss points of me1.

Ω will not coincide, in general, with the finite element triangulation and over each
linear element a piecewise constant distribution of the variables could be defined.
This circumstance is shown, for example, for the element 7 in Figure 6.4 in the case
we assume the plastic strain distribution referred to the Voronoi tessellation of Ω.

In the transfer procedure obtained by imposing the weak enforcement of the
continuity as in Rashid (2002), the field ˜(•)n(x) ∈ Chn+1 is obtained as L2 projection
onto Chn+1 of the respective field hn(•)n(x) ∈ Chn. The sets Chn and Chn+1 denote
the spaces of the piecewise constant functions over each element of the old mesh Thn

and of the new mesh Thn+1, respectively. Since Vhn ⊂ Vhn+1 , it follows Chn ⊂ Chn+1 ,
therefore, this transfer, which in the following we refer to as L2 transfer, coincides
with the variational consistent transfer defined beforehand, that is, with the identity
operator.

Finally, the transfer introduced in Perić et al. (1996) has been used as an
example of smoothing transfer. The value of the state variable hn(•)n at the Gauss
point of each element of the old mesh is first transferred unaltered to the two nodes
of the element. An averaging is then carried out at each node and a continuous
piecewise linear field is successively built by interpolation of the nodal values by
means of the basis functions of the finite element space, Vhn, associated with the
old mesh. The sampling of this field at the Gauss points of the new mesh provides
therein the value of the initial state ˜(•)n. Note that step (d) in Figure 4.5 is not
required, since Vhn ⊂ Vhn+1 so that the nodal interpolant of a function vhn ∈ Vhn

with respect to Vhn+1 reduces to the identity operator. The transfer of the state
variable hnεpn is shown, for example, in Figure 6.5.

Once the data ε̃pn, p̃n at the Gauss points of the new mesh have been assigned,
we consider the finite element solution at t+n corresponding to load increment equal
to zero, i.e., load level equal to q(x, tn) = µ(tn)x. In Section 4.4.1 this solution was
said to be obtained from the equilibration of the initial state and the time instant
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t+n was denoting the time instant tn +∆t with ∆t → 0. Consequently, the resulting
finite element solution will deliver a system state which is in equilibrium with respect
to the new mesh.

Likewise for the case of finite element mesh constant in time, plastic strain
hn+1εpn and accumulated plastic strain hn+1pn obtained at the single Gauss points of
each element of the new mesh are prolongated into a uniform field over the respec-
tive element. The effects of the data equilibration for each transfer are visualized
in Figure 6.6. Here, a variation of the initial state defined by the given transfer
procedure is noted. In particular, then, a saw–teeth distribution has been obtained
in the case of L2 transfer. In this same picture we have also plotted the distribu-
tions hnεpn(x), hnpn(x) so that one can appreciate the discontinuity of these fields as
a result of the change of mesh.

For the definition of the corresponding admissible solution necessary to com-
pute the augmented extended dissipation error we implement the criteria given in
Box 6.1. In particular, for the 1D model problem under consideration, the equili-
brated stress field is given by equation (5.5) which can be used also in this context,
for its definition depends only upon the current finite element stresses. The admis-
sible plastic strain, on the other hand, is obtained by letting

ε
p
ad(x, t

+
n ) = hn+1εpn(x) (6.3)

if
σad(x, t

+
n )
[
hn+1εpn(x) − ε

p
ad(x, t

−
n )
]
≥ 0, (6.4)

otherwise we assume
ε
p
ad(x, t

+
n ) = ε

p
ad(x, t

−
n ), (6.5)

where for the definition of εpad(x, t
−
n ) the remarks expressed in Section 6.2.1 have

been taken into account.
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Figure 6.7 shows the admissible plastic strain and the admissible accumulated
plastic strain distribution at t−n and t+n . These pictures allow one to appreciate
the time discontinuity in these fields as a result of the time discontinuity of the
corresponding finite element solutions. Furthermore, in the case of L2 transfer the
admissible plastic strain is equal to the corresponding finite element solution almost
everywhere, apart from a neighbourhood of the node 15 of the mesh me2. When
we use the smoothing transfer, the admissible plastic strain is different also in the
elements 17 and 18 of the mesh me2. Therein, in order to guarantee (6.4), definition
(6.5) has been used. The accumulated plastic strain pad(x, t

+
n ), conversely, differs

from the corresponding finite element solution in almost all elements for both trans-
fers. This happens because pad(x, t

+
n ) is defined in terms of ∆εpad(x) and pad(x, t

−
n )

with the latter accounting for the history of the solution up to the current time tn.
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Figure 6.8: Evolution in time of the effectivity index for different transfers
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L2 transfer

Smoothing transfer

Figure 6.9: Time Evolution of the Augmented Extended Dissipation Error with its components
for different type of transfer at tn = 25.5. L2 and Smoothing transfer. Change between embedded
meshes. For the meaning of the symbols we refer to Figure 6.2
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L2 transfer

(a) (b)
Smoothing transfer

(c) (d)

Figure 6.10: The error in the elastic law at t = 25.5+ after change of mesh with different transfer
assumptions (a) L2 transfer: Admissible stress σad versus stress conjugate of the admissible elastic

strain Cεead (b) L2 transfer: Pointwise contribution to the error in the elastic law,
1

C
(σad −Cεead)

2

(c) Smoothing transfer: Admissible stress σad versus stress conjugate of the admissible elastic strain

Cεead (d) Smoothing transfer: Pointwise contribution to the error in the elastic law,
1

C
(σad−Cεead)

2

185



Figure 6.11: Total Strain distributions at the time tn = 25.5 after change of mesh

The finite element solution hn+1pn(x), on contrary, is computed in terms of
p̃n(x) which is given by the specific transfer procedure. Consequently, the definition
of pad allows one to account for the approximations associated with the variable up
to the current time tn. This is a piece of information essential for the assessment of
the global quality in time of the solution.

Figure 6.8 shows that the time variation of the effectivity index for the two
schemes resulting from the different transfer assumptions is identical. Both the
augmented extended dissipation error and the exact error which enter equation
(5.8) involve L∞ control in time. Consequently, following change of mesh, reduction
of the error with value equal to the one related to the same initial mesh me1 is
obtained.

In Figure 6.9 we plot the time evolution of the augmented extended dissipa-
tion error along with its components. We observe that for both the finite element
solutions resulting from the two different transfers, we have similar qualitative be-
haviour: reduction in the value of the error due to the reduction of the error in the
state law and a slight increase of the error in the evolution law. This behaviour
of the error shows an improvement of the quality of the solution by considering

tn = 25.5 tn+1 = 27.0
θe

sl θe
sleext θsl

θ
p
sl

θd
∆θd eext θsl

θ
p
sl

θd

0.141 0.160
me1 0.355 0.282

0.244
0.215 - 0.396 0.319

0.276
0.235

0.069 0.076
me2 0.245 0.140

0.122
0.201 - 0.254 0.156

0.136
0.201

me1 → me2 0.355 0.170 0.073 0.219 0.078
L2 transfer t+n t+n 0.154 t+n

0.040 0.355 0.159
0.139

0.227

me1 → me2 0.355 0.218 0.114 0.230 0.080
Sm. transfer t+n t+n 0.186 t+n

0.080 0.355 0.208
0.192

0.237

Table 6.1: Comparison of the error components at time tn = 25.5 and tn+1 = 27.0
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(a) (b)
Smoothing transfer

(c) (d)

Figure 6.12: The error in the hardening law at t = 25.5+ after change of mesh with different
transfer assumptions (a) L2 transfer: Admissible thermodynamic force Rad versus force conjugate
of the admissible accumulated plastic strain Hpad (b) L2 transfer: Pointwise contribution to the

error in the hardening law,
1

H
(Rad − Hpad)

2 (c) Smoothing transfer: Admissible thermodynamic

force Rad versus force conjugate of the admissible accumulated plastic strain Hpad (b) Smoothing

transfer: Pointwise contribution to the error in the hardening law,
1

H
(Rad −Hpad)

2

both types of transfers. In particular, the finite element solution resulting from L2

transfer appears to behave slightly better. This is shown by the time variation of
the current error θn,c which is closer to the time variation of the error en

ext which
is obtained with the finite element mesh me2 constant in time. This can be better
appreciated also in Table 6.1 which reports the values at t−n , t+n and tn+1 of the
several components of the augmented extended dissipation error defined by equa-
tion (6.1). In the same table, for completeness, we have also given the values which
are obtained by assuming the finite element meshes me1 and me2 constant in time
during the whole evolution. The values at the time tn+1, conversely, are reported to
illustrate the influence of the transfer procedure also at later time. In the case at
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Figure 6.13: L2 transfer (a) Variation of admissible plastic strain at tn = 25.5 (b) Space distribu-
tion of f(σad, Rad) at t−n and t+n (c) Pointwise contribution to the jump term ∆θd(tn)

hand, however, the error behaviour at t+n is similar to the one at tn+1.
The Figures 6.10–6.14 permit one to appreciate the source of the difference of

values of the error in the case of the two transfers. This is accomplished by showing
the pointwise contribution to the error components at the time t+n . In particular,
Figure 6.10 displays the pointwise contribution to the error in the elastic law which
shows a major contribution coming from the elements 12, 15, 17 and 18 as a result
of the different distribution of the admissible elastic strain therein. This, in turn,
reflects for the problem at hand the difference of admissible plastic strain, given that
the distribution of the total strain is similar, as shown in Figure 6.11.

The pointwise contribution to the error in the hardening law is given in Figure
6.12 which shows a slightly higher contribution in the case of smoothing transfer
whereas the Figures 6.13 and 6.14 allow comparison of different contributions to
the jump term ∆θd(tn) for the L2 transfer and Smoothing transfer, respectively.
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Smoothing transfer
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Figure 6.14: Smoothing transfer (a) Variation of admissible plastic strain at tn = 25.5 (b) Space
distribution of f(σad, Rad) at t−n and t+n (c) Pointwise contribution to the jump term ∆θd(tn)

For the latter case, the major contribution comes from the elements 14 and 15. In
these elements, the smoothing transfer assumption produces a variation of admissible
plastic strain, as shown in Figure 6.14(a), whereas the variation of f(σad, Rad), given
in Figure 6.14(b) indicates that the behaviour associated with (σad, Rad) should be
elastic, since f ≤ 0 therein.

Finally, Figure 6.15 reports the classical measures of the error introduced in
Section 6.2.1.2. These error measures exhibit the same qualitative behaviour as the
augmented extended dissipation error with the reduction in the value of the error.
They also show an improved behaviour of the finite element solution corresponding
to the L2 transfer. This is made clear from the time evolution of the current error
of the generalised stress field ‖ce

n,c
GSF‖, which is closer to the evolution of the global

error ‖en
GSF‖. The latter is obtained by assuming the constant finite element mesh

me2 throughout the whole loading process. Therefore, it can be said that the aug-
mented extended dissipation error is capable to mirror the approximation associated
with finite element solutions in the presence of change of mesh.
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Figure 6.15: Time Evolution of the Exact Error for different type of transfers at tn = 25.5.
The meaning of the symbols used is the following: ∀ t ∈ I, (•)(t) = sup

τ≤t

‖(•)(x, τ)‖L2(Ω) and

c(•)(t) = ‖(•)(x, t)‖L2(Ω), whereas the superscripts ”o”, ”n, c” and ”n” retain the usual meaning

Analysis of the error: Change between non–embedded meshes
In this second example, a change between non–embedded meshes is assumed to occur
at the time tn = 25.5. As a result, the condition Vhn ⊂ Vhn+1 is no more realized.
Nevertheless, the mesh associated with Vhn+1 is chosen to contain a bigger number
of elements. In particular, the new mesh me2es has been obtained by considering 28
linear equally spaced finite elements. Figure 6.16 shows the time discretization and
the time instant when the change from the old mesh me1 to the new mesh me2es
occurs.

Likewise the previous example, the three types of transfers introduced in Sec-
tion 4.5 are next particularized for the change of mesh considered here.

When one adopts the variationally consistent transfer, the initial state ε̃pn(x),
p̃n(x) is obtained by sampling the fields hnεpn(x) and hnpn(x) at the Gauss points
of the new mesh, respectively. Consistently with the choice of one Gauss point
per element for the integration of the constitutive equations, the fields hnεpn(x) and
hnpn(x) are in turn assumed constant over each element of the old mesh. The
piecewise value is equal to the computed finite element solution at the respective
Gauss point of the element. Therefore, in order to determine the value of the data
ε̃pn(x), p̃n(x) at the element Gauss point of the new mesh, x

hn+1

l,GP ∈ Ω
hn+1

l , one needs
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to identify first the element Ωhn

e ∈ Thn of the old mesh such that x
hn+1

l,GP ∈ Ωhn

e . Then,

by denoting with xhn

e,GP the Gauss point of the element Ωhn

e , one assumes

˜(•)n(x
hn+1

l,GP ) = hn(•)n(xhn

e,GP ) (6.6)

If x
hn+1

l,GP lies on the boundary of the element Ωhn

e , the average value of the variables
between the two neighbouring elements is assumed. The definition of the variation-
ally consistent transfer of the variable hnεpn(x) is visualized in Figure 6.17.

The initial state ε̃pn(x), p̃n(x) obtained from the weak enforcement of the con-
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Figure 6.18: Weak enforcement of the continuity between the fields hnεpn(x) and ε̃pn(x)

tinuity with the fields hnεpn(x), hnpn(x) as introduced in Rashid (2002) is given by

∀ l = 1, 2, . . . , Nhn+1

˜(•)l

n(x) =

∫ x
hn+1
l+1

x
hn+1
l

hn(•)n(x) dx

x
hn+1

l − xhn

l

∀x ∈ ]x
hn+1

l , x
hn+1

l+1 [

(6.7)

where Nhn+1 is the number of elements in the triangulation Thn+1 and the superscript
”l” stands for element. The transfer defined by equation (6.7) assumes a constant

value for ˜(•)l

n(x) over each element Ω
hn+1

l . This value is equal to the weighted
average of the field hn(•)n(x), with the weight given by the area of the so called
tributary regions. For the problem at hand, these regions are defined as the parts
of the element, Ω

hn+1

l = [x
hn+1

l , x
hn+1

l+1 ], of the new mesh where the field hn(•)n(x) is
constant. The definition of ε̃pn is visualized in Figure 6.18.

Remark 6.1. Unlike the case Vhn ⊂ Vhn+1, since now Vhn 6⊂ Vhn+1 , the L2 transfer
and the variationally consistent transfer describe two different procedures which are
not coincident with the identity operator.

Finally, the smoothing transfer has been described in general in Figure 4.5.
For the problem at hand, the transfer of the variable hnεpn(x) is given in Figure 6.19.

The stresses obtained by solving the incremental constitutive equations with
data ε̃pn, p̃n and the displacement field uhn = uhn(x, t−n ) are not in equilibrium with
respect to the test functions associated with the new mesh. Therefore, the resulting
residual must be equilibrated with consequent redistribution of the stresses and of
the state variables. To achieve this, a finite element analysis with the new mesh and
load increment equal to zero, i.e., load level equal to q(x, tn) = µ(tn)x, is performed.
In this manner, the ensuing finite element solution will deliver at t+n a system state
which is in equilibrium with respect to the new mesh.
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The computed plastic strain hn+1εpn and accumulated plastic strain hn+1pn ob-
tained at the single Gauss points of each element of the new mesh are prolongated
into a uniform field over the respective element. The effects of the data equilibra-
tion for each transfer are visualized in Figure 6.20. In general, a variation of the
initial state defined by the given transfer procedure is obtained. In particular, when
the variationally consistent transfer is used, the initial state ε̃pn(x), p̃n(x), by defini-
tion, presents very little variation with respect to the finite element solution hnεpn(x),
hnpn(x) obtained on the old mesh me1. Consequently, the equilibration of the data
with respect to the new mesh me2es produces a non uniform redistribution of plastic
strain and accumulated plastic strain with concentration of plastic strain especially
in the elements 23 and 27. This delivers a picture of the plastic strain distribution
at t+n which appears to be substantially different from hεpn(x), where hεpn(x) denotes
the plastic strain distribution at tn obtained from the finite element solution with
mesh me2es constant throughout the whole evolution.

Also with the L2 and smoothing transfer we obtain non uniform redistribution
of the variables following the equilibration of the data. However, this does not
produce plastic distributions at t+n substantially different from hεpn(x).

Once the finite element solution has been computed at t+n , the criteria given
in Box 6.1 are implemented to build the corresponding admissible solution neces-
sary to evaluate the augmented extended dissipation error. The distribution of the
admissible plastic strain and admissible accumulated plastic strain at t−n and t+n are
given in Figure 6.21. A time discontinuity for these fields is introduced at tn as a
result of the time discontinuity of the corresponding finite element solutions.

The admissible plastic strain at time t+n is equal to the corresponding finite
element solution wherever condition (6.4) is satisfied, otherwise it is assumed equal to
the value at t−n . The accumulated plastic strain pad(x, t

+
n ), conversely, differs from

the corresponding finite element solution in all the elements of the fully discrete
schemes resulting from the three different transfer procedures.
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Figure 6.20: Plastic strain and accumulated plastic strain distribution at tn = 25.5 resulting from
different transfer operations.
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Figure 6.21: Admissible plastic strain and admissible accumulated plastic strain distribution at
tn = 25.5−, tn = 25.5+ and plots of hn+1(•)n(x) obtained from equilibration of the data with
respect to the new mesh
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Figure 6.22: Evolution in time of the effectivity index.

This difference is due to the definition of pad(x, t
+
n ) in terms of pad(x, t

−
n ) and

represents an essential feature in the assessment of the global quality in time of the
solution. In fact, pad(x, t

−
n ) accounts for the history of the solution up to the current

time tn whereas the finite element solution hn+1pn(x) is computed in terms of p̃n(x).
The latter field is given by the specific transfer procedure, thus, information on the
accuracy associated with the past values of the solution could be lost. The definition
of pad, on contrary, allows one to account for the approximations associated with
the variable up to the current time tn.

Figure 6.22 shows the time variation of the effectivity index which is identical
for the three schemes. Both the augmented extended dissipation error and the error
in solution, which enter equation (5.8), involve L∞ control in time. Consequently,
following the change of mesh, reduction in the value of the error with value equal to
the one relative to the same initial mesh me1 is obtained for both the augmented
extended dissipation error and the error in solution.

The time evolutions of the augmented extended dissipation error of the ad-
missible solutions corresponding to the finite element solutions resulting from the
three different transfers are given in Figure 6.23. All the diagrams present similar
qualitative behaviour: reduction in the value of the error due to the reduction of
the error in the state law and a slight increase of the error in the evolution law is
noted. Therefore, there is globally an improvement of the quality of the solution
by considering the proposed transfers for the given change of mesh. In particular,
the solution resulting from L2 transfer appears to behave better out of the proposed
transfer procedures. This is shown by the time variation of the current error θn,c(t).
In the case of the L2 transfer, the evolution of θn,c(t) is the closest to en

ext(t), where
en

ext(t) is the extended dissipation error which is obtained with the constant finite
element mesh me2es throughout the loading process.

Table 6.2 contains the values at t−n , t+n and tn+1 of the several components
of the augmented extended dissipation error defined by equation (6.1). This table
allows one to appreciate the differences between different transfer procedures. For

196



completeness, we have also given the values which are obtained by assuming the
finite element meshes me1 and me2es constant in time during the whole loading
process, whereas the values at the time tn+1 are reported to illustrate the influence
of the transfer procedure at a later time.

tn = 25.5 tn+1 = 27.0
θe

sl θe
sleext θsl

θ
p
sl

θd
∆θd eext θsl

θ
p
sl

θd

0.141 0.160
me1 0.355 0.282

0.244
0.215 - 0.396 0.319

0.276
0.235

0.057 0.063
me2es 0.236 0.131

0.118
0.196 - 0.245 0.146

0.132
0.197

me1 → me2es 0.355 0.173 0.076 0.218 0.075
Var. transfer t+n t+n 0.156 t+n

0.033 0.355 0.190
0.174

0.224

me1 → me2es 0.355 0.184 0.110 0.216 0.074
L2 transfer t+n t+n 0.148 t+n

0.014 0.355 0.159
0.141

0.218

me1 → me2es 0.355 0.222 0.144 0.225 0.081
Sm. transfer t+n t+n 0.168 t+n

0.064 0.355 0.179
0.160

0.229

Table 6.2: Comparison of the error components at time tn = 25.5 and tn+1 = 27.0

The examination of this table shows that when the variationally consistent
transfer is used, the least free energy norm of the error, θn,c

sl , at t+n is attained. This
is essentially the result of the best fit between the admissible stress and the stress
conjugate to the admissible elastic strain as shown in Figure 6.24. The fit between
the admissible thermodynamic forces and the forces conjugate to the admissible
accumulated plastic strain, depicted in Figure 6.25, conversely, appears to be best
in the case of the L2 transfer. As for the effects of the transfer, we have already
mentioned that with the adoption of the variationally consistent transfer, the non
uniform redistribution of the initial state ε̃pn, p̃n following the equilibration of the
data produces concentration of plastic strain in the elements 23 and 27. This, in
turn, gives rise to an admissible accumulated plastic distribution pad(x, t

+
n ) which

is substantially different from the distribution of the admissible hardening forces at
t+n . This difference is kept also at tn+1 and is the cause of the increase of the error
associated with the residual in the hardening law at the time tn+1.

With the L2 and smoothing transfer, on contrary, the error in the state law at
tn+1 decreases with respect to t+n . This decrease can be considered due mainly to
the enhanced approximation properties of the new interpolation space whose effects
are soon evident on the variation of admissible plastic strain. Therefore, for these
two transfers, unlike the variationally consistent transfer, the values of the error at
t+n can be assumed to reflect the effects more pertinent to the transfer procedure.
For the variationally consistent transfer, on contrary, also the value of the error at
tn+1 must be considered.

Likewise the case of change between embedded meshes, Figures 6.26–6.28 al-
low one to compare the different contributions to the jump term ∆θd(tn) for the
transfer procedures under consideration. This appears to be highest in the case of
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the smoothing transfer assumption. The major contribution arises also here from
the elements 15, 16 and 18 and must be related to the plastic strain which is therein
introduced with the transfer and to the evolution of the admissible generalised stress
field.

Finally, Figure 6.29 reports the classical measures of the error introduced in
Section 6.2.1.2. These diagrams present the same qualitative behaviour as the aug-
mented extended dissipation error. Therefore, it is possible to assess the advantage
of change of mesh which is to be related to the reduction in the value of the error.
They also show a better behaviour of the admissible solution corresponding to the
L2 transfer. This does appear from the time evolution of the current error of the
generalised stress field ‖ce

n,c
GSF (t)‖. In fact, the variation of ‖ce

n,c
GSF (t)‖ is closer to

the evolution of the global error ‖en
GSF (t)‖ that is obtained by assuming the constant

finite element mesh me2es throughout the loading process. Therefore, likewise the
previous example, it can be said that the augmented extended dissipation error is
capable to mirror the approximations associated with finite element solutions also
in presence of change between non–embedded meshes.
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Variationally consistent transfer

L2 transfer

Smoothing transfer

Figure 6.23: Time Evolution of the Augmented Extended Dissipation Error with its components
for different type of transfer at tn = 25.5. Variationally consistent, L2 and Smoothing transfer.
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Variationally consistent transfer

(a) (b)
L2 transfer

(c) (d)
Smoothing transfer

(e) (f)

Figure 6.24: The error in the elastic law at t = 25.5+ after change of mesh with different transfer
operations (a) Variationally consistent transfer: Admissible stress σad versus stress conjugate of
the admissible elastic strain Cεead (b) Variationally consistent transfer: Pointwise contribution to

the error in the elastic law,
1

C
(σad − Cεead)

2 (c) L2 transfer: Admissible stress σad versus stress

conjugate of the admissible elastic strain Cεead (d) L2 transfer: Pointwise contribution to the error

in the elastic law,
1

C
(σad − Cεead)

2 (e) Smoothing transfer: Admissible stress σad versus stress

conjugate of the admissible elastic strain Cεead (f) Smoothing transfer: Pointwise contribution to

the error in the elastic law,
1

C
(σad −Cεead)

2



Variationally consistent transfer

(a) (b)
L2 transfer

(c) (d)
Smoothing transfer

(e) (f)

Figure 6.25: The error in the hardening law at t = 25.5+ after change of mesh with different
transfer operations (a) Variationally consistent transfer: Admissible thermodynamic force Rad

versus force conjugate of the admissible accumulated plastic strain Hpad (b) Variationally consistent

transfer: Pointwise contribution to the error in the hardening law,
1

H
(Rad−Hpad)

2 (c) L2 transfer:

Admissible thermodynamic force Rad versus force conjugate of the admissible accumulated plastic

strain Hpad (d) L2 transfer: Pointwise contribution to the error in the hardening law,
1

H
(Rad −

Hpad)
2 (e) Smoothing transfer: Admissible thermodynamic force Rad versus force conjugate of the

admissible accumulated plastic strain Hpad (f) Smoothing transfer: Pointwise contribution to the

error in the hardening law,
1

H
(Rad −Hpad)

2



Variationally consistent transfer
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Figure 6.26: Variationally consistent transfer (a) Variation of admissible plastic strain at tn = 25.5
(b) Space distribution of f(σad, Rad) at t−n and t+n (c) Pointwise contribution to the jump term
∆θd(tn)



L2 transfer
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Figure 6.27: L2 transfer (a) Variation of admissible plastic strain at tn = 25.5 (b) Space distribu-
tion of f(σad, Rad) at t−n and t+n (c) Pointwise contribution to the jump term ∆θd(tn)



Smoothing transfer
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Figure 6.28: Smoothing transfer (a) Variation of admissible plastic strain at tn = 25.5 (b) Space
distribution of f(σad, Rad) at t−n and t+n (c) Pointwise contribution to the jump term ∆θd(tn)
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Figure 6.29: Time Evolution of the Exact Error for different type of transfers at tn = 25.5.
The meaning of the symbols used is the following: ∀ t ∈ I, (•)(t) = sup

τ≤t

‖(•)(x, τ)‖L2(Ω) and

c(•)(t) = ‖(•)(x, t)‖L2(Ω), whereas the superscripts ”o”, ”n, c” and ”n” retain the usual meaning



6.3 Concluding remarks

When the finite element mesh is changed at time instant tn, a discontinuity jump is
introduced in the solution at the time instant tn. The jump produces a deterioration
of the global accuracy of the approximation which is due both to the low order
regularity of the approximation across the time node tn and to the eventual diffusion
of inelastic deformations as a result of the transfer procedure. However, change
of mesh along with suitable definition of the data can enhance the quality of the
solution because of the improved approximation properties of the new finite element
subspace. Therefore, the advantage of changing mesh with a transfer procedure
depends on the interplay between the above opposing features.

In this chapter we have presented a general methodology for the assessment of
the global quality of displacement finite element solutions of elastoplastic problems
discretized in time with the backward Euler method on dynamically changing mesh.

This methodology employs the extended dissipation error, augmented by the
term which accounts for the time discontinuity in the admissible solutions. The
applicability of this new error estimator has been illustrated on a one dimensional
model problem. Here, the behaviour of the finite element solution with respect to
several definitions of transfer procedures and type of change of meshes has been
considered. We have shown that the proposed error estimator reflects quite well the
several sources of approximations, which result from the change of finite element
mesh with the time step. Furthermore, the new error estimator accounts also for
the improved approximation property, which arises from the enrichment of the finite
element space and from suitable definition of the data on the new mesh. Therefore,
the augmented extended dissipation error represents an effective tool for the critical
assessment of the effects of transfer procedures for evolving meshes in small strain
elastoplasticity.
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Chapter 7

Conclusions

A general methodology for the assessment of the global quality of displacement finite
element solutions of elastoplastic problems discretized in time with the backward
Euler method on dynamically changing mesh has been presented.

The motivating idea has been the observation that change of data and/or finite
element mesh from one time interval to the other can be both related to a discon-
tinuity jump of the approximate solution across the time instant tn. Consequently,
in the development of reliable a posteriori error estimates one needs to account not
only for the time step and finite element mesh size but also for the value of the
jump. Two simple error analysis of a first order ordinary differential equation, cho-
sen as elementary prototype of the evolution law of the internal variables, show the
influence on the error of the discontinuity jump, thus, the need for including such
term in an a posteriori error estimate.

As a result, only measures of error that account for time discretization effects
can reflect the low order regularity of the approximation across the time instant tn
when the change of mesh occurs. Thus, the extended dissipation error introduced
by Ladevèze et al. (1999) can be used for this aim. This is a measure of the error in
the constitutive equations, that is, the state law and the evolution law, produced by
an admissible solution which is time continuous, and satisfies the equilibrium and
the kinematic conditions at any time instant.

The extended dissipation error capability to capture the effects of time and
space discretization has been shown in the assessment of the quality of finite el-
ement solutions of elastoplastic problems with the mesh constant throughout the
loading process. Criteria to construct an admissible solution, which mirrors the
approximations associated with the finite element solution, have been given for the
Prandtl–Reuss plasticity model and illustrated with a numerical example. This has
shown that all trends on the state law and dissipation contribution to the error were
meaningful. Notable was also the comparison with classical measures of the exact
error in solution showing that the extended dissipation error reflects quite well the
evolution of the admissible solution with respect to the exact one as described by
more classical measures of the error.

However, the extended dissipation error given in Ladevèze et al. (1999) assumes
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time continuity of the admissible solution. Thus, in the second part of Chapter 3, we
have defined a new measure of the error in the constitutive equations which accounts
for the discontinuity jump in the admissible solution. The theory has been developed
for rate–independent plasticity material models and exploits the observation that
the solution of the initial boundary value problem, which governs the evolution of
this class of material models, depends only on the sequence of load levels while
time has just the function of ordering this sequence. Thus, fictitious continuous
admissible processes have been defined over the time interval [tn, tn + ∆t], with ∆t
not influential in the solution, along which the discontinuity was assumed to be
taking place.

The analysis of the error in the constitutive equations along the aforementioned
fictitious processes has lead to the definition of an additional nonnegative term which
was depending on the jump, in agreement with the simple a posteriori error analysis
of the first order differential equation. This term and the behaviour of the error
component in the state law characterize completely the discontinuity jump. This is
the content of Theorem 3.8 of Chapter 3 which motivates the use of the augmented
extended dissipation error as basis of a methodology for the assessment of the global
accuracy in time of finite element solutions on evolving meshes.

Applications of the theory have been presented for the displacement finite ele-
ment solution of the Prandtl-Reuss plasticity model solved with incremental proce-
dure. For this material model we have given the criteria to build admissible solutions
as close as possible to the computed finite element solution.

The applicability of the methodology has been finally illustrated on a one di-
mensional model problem where a detailed study of transfer operators (Ortiz &
Quigley, 1991; Perić et al., 1996; Rashid, 2002) has been carried out, with the nu-
merical experiments providing confirmation of the theoretical developments. The
augmented extended dissipation error was able to mirror the several sources of ap-
proximations which are incurred by the change of finite element mesh with the time
step. Also, it was able to account for the improved approximation property, which
were arising from the enrichment of the finite element space and from suitable defi-
nition of the data on the new mesh. Therefore, the augmented extended dissipation
error has proven to be an effective tool for the critical assessment of the effects of
transfer procedures for evolving meshes in small strain elastoplasticity.

7.1 Suggestions for further research

Although notable are the advances in the numerical simulation of more and more
complex physical models, very little has been done on the corresponding side of
assessment of the accuracy of the produced approximation.

This work has an aim to indicate a new way of designing adaptive strategies
for problems solved with incremental procedure. In this sense, still further research
is necessary. The following points bring up some issues that deserve special attention.
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Definition of a new transfer.
It has since been recognized that the issues of how to change mesh and the defini-
tion of data is a very delicate matter in the adaptive solution of history dependent
material models solved with incremental procedures.

To date, the available transfer operations have been introduced upon the re-
quest to meet several vaguely defined properties which are invoked to prevent cor-
rupting the quality of the resulting finite element solution (Ortiz & Quigley, 1991;
Perić et al., 1996; Rashid, 2002). With the methodology set in this work, a more
rational treatment of the transfer operation seems possible to be devised in the con-
text of the ensuing error. This should therefore lead to the definition of a transfer
operation such as the one that minimizes the error produced. The definition of time
step size, mesh size and indication on how to change mesh and to give data are
not separate steps arising from heuristic arguments but should result from a unified
analysis of the error contribution of each component.

Extension to higher dimensional problems.
The theory presented in this work has been formulated in tensorial notations. Thus,
its application to higher dimensional problems should not give further complica-
tions apart from the implementation aspects. Criteria to build statically admissible
stress fields are already in place (Ladevèze & Leguillon, 1983; Ladevèze et al., 1991;
Ladevèze & Rougeot, 1997) whereas the definition of the other internal variables to
build an admissible solution has been indicated in this work.

Extension to viscoplasticity.
The considerations of Section 3.5.2 cannot be carried over as they stand to a
viscoplastic model. For example, in the viscoplastic model corresponding to the
Prandtl–Reuss plasticity model (Ladevèze & Pelle, 2001), the dissipation potential
ϕ(ε̇p,−ṗ) is given by

ϕ(ε̇p,−ṗ) = R0‖ε̇p‖ + k
n

n+ 1

( ṗ

k

)n+1
n

+ IC

where C is the same domain defined as in the Prandtl–Reuss plasticity model and

k, n are material constants, with n > 0. Thus, it follows that γ
def
=
n + 1

n
> 1. As a

result, in presence of a discontinuity jump in the internal variable p, ṗ is a δ-Dirac
type distribution. Hence, (δ)γ with γ > 1 is no more a distribution (Schwartz,
1966) and the limit (3.48), which had been assumed as error associated with the
discontinuity jump, is not finite.

In this case, it can be worth exploiting the following idea: Starting from the
expression of the dissipation error for a time continuous fictitious admissible solution
defined over [tn, tn + Tc], where Tc stands for a critical time to be computed, we
assume that, for instance, the continuous admissible plastic strain has the following
expression

εp(x, t) = εp(x, t−n ) + [εp(x, t+n ) − εp(x, t−n )]ϕ(t)
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with the jump [εp]tn very small so that [εp]tnϕ(t) may be assumed as a variation.
Applying the methods of the calculus of the variations, we can state the following
problem: For given Tc find the function ϕ(t) which minimizes the error.

The function ϕ(t) is required to meet the boundary conditions ϕ(t = 0) = 0,
ϕ(t = Tc) = 1 and the minimization should be carried out in a-dimensional format
so that a certain value for Tc can be computed.

The extension to viscoplasticity should also be such that when the viscoplastic
model reduces to the corresponding rate independent model, the expression of the
error reduces to the one obtained for the corresponding rate independent model.
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Rendus Académie des Sciences, II, 309, 1095–1099.
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