PROPIEDADES GEOMÉTRICAS DE LAS FUNCIONES DIFERENCIABLES, DE \mathbb{R}^2 EN \mathbb{R}

Sea $f: D \subset \mathbb{R}^2 \to \mathbb{R}$, $P_0(x_0, y_0) \in D^0$, f diferenciable en P_0 . Sea S la superficie representación gráfica de f en \mathbb{R}^3 y $Q_0(x_0, y_0, f(x_0, y_0))$. Entonces:

- 1) Toda curva intersección de S con un plano vertical que pasa por P_0 tiene recta tangente en Q_0 .
- 2) Dichas rectas tangentes están contenidas en un mismo plano llamado por definición plano tangente a S en Q_0 , cuya ecuación es:

$$z - z_0 = f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0)$$

3) Si \mathcal{C} es cualquier curva contenida en S que pasa por Q_0 y admite recta tangente en Q_0 , entonces dicha recta tangente está contenida en el plano tangente.

Demostraciones

PROPIEDAD 1)

Sea C $\begin{cases} z = f(x, y) \\ P = P_0 + t\vec{u}, \ t \in \mathbb{R} \end{cases}$ curva intersección de S con el plano vertical que contiene a la recta que pasa por P_0 con dirección unitaria \vec{u}

Parametrizamos la curva C:

$$g(t) = (x_0 + tu_1, y_0 + tu_2, f(x_0 + tu_1, y_0 + tu_2)) t \in [-\delta, \delta], \delta > 0$$

Observemos que:

- 1) $f(x_0 + tu_1, y_0 + tu_2) = \varphi(t)$ función real de una única variable real.
- 2) Si t = 0 entonces $g(0) = (x_0, y_0, f(x_0, y_0)) = Q_0$.

La curva \mathcal{C} admite recta tangente en Q_0 si existe g'(0). Probemos esto último.

Tenemos que $g'(t) = (u_1, u_2, \varphi'(t))$. Luego existe g'(0) si existe $\varphi'(0)$. Veamos que existe $\varphi'(0)$ analizando los siguientes límites laterales:

$$\lim_{t \to 0^+} \frac{\varphi(t) - \varphi(0)}{t} = \lim_{t \to 0^+} \frac{f(P_0 + t\vec{u}) - f(P_0)}{t} = D_{\vec{u}} f(P_0)$$

La última igualdad vale por ser, por hipótesis, f diferenciable en P_0 .

$$\lim_{t \to 0^-} \frac{\varphi(t) - \varphi(0)}{t} = \lim_{t \to 0^-} \frac{f(P_0 + t\vec{u}) - f(P_0)}{t} = \lim_{s \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^-} \frac{f(P_0 + t\vec{u}) - f(P_0)}{t} = \lim_{s \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^-} \frac{f(P_0 + t\vec{u}) - f(P_0)}{t} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0)}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u}) - f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 - s\vec{u})}{(-s)} = \lim_{t \to 0^+} \frac{f(P_0 -$$

$$=-\lim_{s\to 0^+}\frac{f(P_0+s(-\vec{u}))-f(P_0)}{s}=-D_{-\vec{u}}f(P_0)=D_{\vec{u}}f(P_0)$$

Las dos últimas igualdades valen por ser, por hipótesis, f diferenciable en P_0 .

Entonces tenemos $\varphi'_+(0) = \varphi'_-(0) = D_{ij}f(P_0)$, por lo tanto $\varphi'(0) = D_{ij}f(P_0)$.

Con este análisis concluimos que $g'(0) = (u_1, u_2, \varphi'(0)) = (u_1, u_2, D_{\vec{u}}f(P_0)).$

Por lo tanto la curva C admite recta tangente en Q_0 y su ecuación es:

$$X = Q_0 + \lambda(u_1, u_2, D_{\vec{u}}f(P_0)), \lambda \in \mathbb{R}.$$

PROPIEDAD 2)

Consideremos dos curvas: C_1 $\begin{cases} z = f(x, y) \\ P = P_0 + t(1, 0), t \in \mathbb{R} \end{cases}$ C_2 $\begin{cases} z = f(x, y) \\ P = P_0 + t(0, 1), t \in \mathbb{R} \end{cases}$

Como f es diferenciable en P_0 vale que $D_{\vec{u}}f(P_0) = \vec{\nabla}f(P_0) \cdot \vec{u}$, y por propiedad 1) tenemos que: $g_1'(0) = (1,0,f_x(P_0))$ vector tangente a C_1 en Q_0 , $g_2'(0) = (0,1,f_y(P_0))$ vector tangente a C_2 en Q_0 .

La ecuación del plano que contiene a estos dos vectores y que pasa por Q_0 será:

$$(X - Q_0) \cdot N = 0 \qquad (\mathbf{I})$$

Donde $X = (x_0, y_0, z_0)$; $Q_0 = (x_0, y_0, z_0)$ y el vector normal N será

$$N = (1,0,f_x(P_0)) \times (0,1,f_y(P_0)) = (-f_x(P_0),-f_y(P_0),1)$$

Luego volviendo a la ecuación (I) tenemos que:

$$((x, y, z) - (x_0, y_0, z_0)) \cdot (-f_x(P_0), -f_y(P_0), 1) = 0$$

$$(x - x_0, y - y_0, z - z_0) \cdot (-f_x(P_0), -f_y(P_0), 1) = 0$$

$$z - z_0 = f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0)$$

Para probar que el plano tangente contiene a todas las rectas tangentes obtenidas en la Propiedad 1) debemos ver que dichas rectas satisfacen la ecuación del plano tangente.

De la Propiedad 1) teníamos que $X = Q_0 + \lambda(u_1, u_2, D_{\vec{u}}f(P_0)), \lambda \in \mathbb{R}$ ecuación de la recta tangente a la curva \mathcal{C} en Q_0 , luego reemplazando en la ecuación (I) tenemos:

$$(X - Q_0) \cdot N = (Q_0 + \lambda(u_1, u_2, D_{\overrightarrow{u}}f(P_0)) - Q_0) \cdot (-f_x(P_0), -f_y(P_0), 1)$$

$$= (\lambda u_1, \lambda u_2, \lambda D_{\overrightarrow{u}}f(P_0)) \cdot (-f_x(P_0), -f_y(P_0), 1)$$

$$= -f_x(P_0)\lambda u_1 - f_y(P_0)\lambda u_2 + \lambda D_{\overrightarrow{u}}f(P_0)$$

$$= -\lambda(f_x(P_0)u_1 + f_y(P_0)u_2) + \lambda D_{\overrightarrow{u}}f(P_0)$$

$$= -\lambda D_{\overrightarrow{u}}f(P_0) + \lambda D_{\overrightarrow{u}}f(P_0)$$

$$f \text{ es diferenciable en } P_0$$

$$= 0$$

Luego todas las rectas tangentes obtenidas en la Propiedad 1) están contenidas en el plano tangente.

PROPIEDAD 3)

Se acepta sin demostración. Para la misma se utiliza la Regla de la Cadena.